第三周的编程作业

这次作业,我也是照着别人看的,但是最后我发现会报错,而且结果明显不合理,找了好长,还会报错

<ipython>:5: RuntimeWarning: invalid value encountered in log
cost = (-1/m) * np.sum(np.log(A2)* Y + (1 - Y) * np.log(1 - A2))
<ipython>:5: RuntimeWarning: divide by zero encountered in log
cost = (-1/m) * np.sum(np.log(A2)* Y + (1 - Y) * np.log(1 - A2))

其实原因就在于构建网络的时候,第二个应该是sigmoid函数,博主写成了tanh函数,导致计算成本为而且准确的比较低

主函数

#tetsCases提供一些函数来评估函数的正确性
#planar_utils提供了各种的功能
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary,sigmoid,load_planar_dataset,load_extra_datasets

np.random.seed(1)

X,Y=load_planar_dataset()

shape_X=X.shape#[2,400]
shape_Y=Y.shape#[1,400]
m=Y.shape[1]#400

''''
##sklearn内置函数,可以简单的进行逻辑回归处理
##内置函数不能画图,懒得解决了,不管怎么样我们得到线性回归的正确率不好
clf=sklearn.linear_model.LogisticRegressionCV()
clf.fit(X.T,Y.T)
LR_predictions=clf.predict(X.T)
print ("逻辑回归的准确性: %d " % float((np.dot(Y, LR_predictions) +
		np.dot(1 - Y,1 - LR_predictions)) / float(Y.size) * 100) +
       "% " + "(正确标记的数据点所占的百分比)")
'''

#定义神经网络结构
def layer_sizes(X,Y):
    n_x=X.shape[0]#输入层数量
    n_h=4#隐藏层数量
    n_y=Y.shape[0]#输出层数量

    return (n_x,n_h,n_y)

#初始化模型的参数
def initialize_parameters(n_x,n_h,n_y):
    np.random.seed(2)##保证你随机输入的数据和他们的一样
    W1=np.random.randn(n_h,n_x)*0.01
    b1=np.zeros(shape=(n_h,1))
    W2=np.random.randn(n_y,n_h)*0.01
    b2=np.zeros(shape=(n_y,1))

    assert (W1.shape==(n_h,n_x))
    assert (b1.shape==(n_h,1))
    assert (W2.shape==(n_y,n_h))
    assert (b2.shape==(n_y,1))

    parameters={"W1":W1,"W2":W2,"b1":b1,"b2":b2}
    return parameters

def forward_propagation(X,parameters):
    W1=parameters["W1"]
    W2=parameters["W2"]
    b1=parameters["b1"]
    b2=parameters["b2"]

    ##向前传播
    Z1=np.dot(W1,X)+b1
    A1=np.tanh(Z1)
    Z2=np.dot(W2,A1)+b2
    ##这里应该使用sigmoid函数,不然最后的成本为NaN,而且学习成本特别高,准确率也不太行
    A2=sigmoid(Z2)

    assert (A2.shape==(1,X.shape[1]))

    cache={"Z1":Z1,"A1":A1,"Z2":Z2,"A2":A2}
    return (A2,cache)

##计算交叉熵损失
def compute_cost(A2,Y,parameters):
    m=Y.shape[1]
    W1=parameters["W1"]
    W2=parameters["W2"]

    logprobs=logprobs=np.multiply(np.log(A2),Y)+np.multiply((1-Y),np.log(1-A2))
    cost=-np.sum(logprobs)/m
    cost=float(np.squeeze(cost))

    assert (isinstance(cost,float))##isinstance判断两种类型是否想等、

    return cost

def backward_propagation(parameters,cache,X,Y):
    m=X.shape[1]

    W1=parameters["W1"]
    W2=parameters["W2"]

    A1=cache["A1"]
    A2=cache["A2"]

    dZ2=A2-Y
    dW2=(1/m)*np.dot(dZ2,A1.T)
    db2=(1/m)*np.sum(dZ2,axis=1,keepdims=True)

    dZ1=np.multiply(np.dot(W2.T,dZ2),1-np.power(A1,2))
    dW1=(1/m)*np.dot(dZ1,X.T)
    db1=(1/m)*np.sum(dZ1,axis=1,keepdims=True)

    grads={"dW1":dW1,"db1":db1,"dW2":dW2,"db2":db2}
    return grads

##更新参数
##parameters为w,b,,grads为dw,db
def update_parameters(parameters,grads,learning_rates=1.2):
    W1,W2=parameters["W1"],parameters["W2"]
    b1,b2=parameters["b1"],parameters["b2"]

    dW1,dW2=grads["dW1"],grads["dW2"]
    db1,db2=grads["db1"],grads["db2"]

    W1=W1-learning_rates*dW1
    W2=W2-learning_rates*dW2
    b1=b1-learning_rates*db1
    b2=b2-learning_rates*db2

    parameters={"W1":W1,"b1":b1,"W2":W2,"b2":b2}

    return parameters

##然后我们做一个main函数
def nn_model(X,Y,n_h,num_iterations,print_cost=False):

    np.random.seed(3)
    ##该函数返回n_x,n_h,n_y
    n_x=layer_sizes(X,Y)[0]
    n_y=layer_sizes(X,Y)[2]

    parameters=initialize_parameters(n_x,n_h,n_y)
    W1=parameters["W1"]
    b1=parameters["b1"]
    W2=parameters["W2"]
    b2=parameters["b2"]

    for i in range(num_iterations):
        A2,cache=forward_propagation(X,parameters)
        cost=compute_cost(A2,Y,parameters)
        grads=backward_propagation(parameters,cache,X,Y)
        parameters=update_parameters(parameters,grads,learning_rates=0.4)

        if print_cost:
            if i%1000==0:
                print("第",i,"次循环,成本为:"+str(cost))

    return parameters


##预测结果
def predict (parameters,X):

    A2,cache=forward_propagation(X,parameters)
    predictions=np.round(A2)##去整


    return predictions

parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)

#绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))
plt.show()

predictions = predict(parameters, X)
print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')

planar_utils.py函数

import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model

#绘制决策边界
def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)


def sigmoid(x):
    s = 1/(1+np.exp(-x))
    return s

#加载平面数据集
def load_planar_dataset():
    np.random.seed(1)
    m = 400 # number of examples例子的数量
    N = int(m/2) # number of points per class,把数据分为两类,每一类的点数
    D = 2 # dimensionality,维度
    X = np.zeros((m,D)) # data matrix where each row is a single example,行,X应该需要取转置
    Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
    a = 4 # maximum ray of the flower

    for j in range(2):
        ix = range(N*j,N*(j+1))
        t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
        r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
        X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
        Y[ix] = j

    X = X.T
    Y = Y.T

    return X, Y

def load_extra_datasets():
    N = 200
    noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
    noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
    blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
    gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
    no_structure = np.random.rand(N, 2), np.random.rand(N, 2)

    return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
testCases.py函数
#-*- coding: UTF-8 -*-
"""
# WANGZHE12
"""
import numpy as np

def layer_sizes_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(5, 3)
    Y_assess = np.random.randn(2, 3)
    return X_assess, Y_assess

def initialize_parameters_test_case():
    n_x, n_h, n_y = 2, 4, 1
    return n_x, n_h, n_y

def forward_propagation_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)

    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    return X_assess, parameters

def compute_cost_test_case():
    np.random.seed(1)
    Y_assess = np.random.randn(1, 3)
    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    a2 = (np.array([[ 0.5002307 ,  0.49985831,  0.50023963]]))

    return a2, Y_assess, parameters

def backward_propagation_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    Y_assess = np.random.randn(1, 3)
    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    cache = {'A1': np.array([[-0.00616578,  0.0020626 ,  0.00349619],
         [-0.05225116,  0.02725659, -0.02646251],
         [-0.02009721,  0.0036869 ,  0.02883756],
         [ 0.02152675, -0.01385234,  0.02599885]]),
  'A2': np.array([[ 0.5002307 ,  0.49985831,  0.50023963]]),
  'Z1': np.array([[-0.00616586,  0.0020626 ,  0.0034962 ],
         [-0.05229879,  0.02726335, -0.02646869],
         [-0.02009991,  0.00368692,  0.02884556],
         [ 0.02153007, -0.01385322,  0.02600471]]),
  'Z2': np.array([[ 0.00092281, -0.00056678,  0.00095853]])}
    return parameters, cache, X_assess, Y_assess

def update_parameters_test_case():
    parameters = {'W1': np.array([[-0.00615039,  0.0169021 ],
        [-0.02311792,  0.03137121],
        [-0.0169217 , -0.01752545],
        [ 0.00935436, -0.05018221]]),
 'W2': np.array([[-0.0104319 , -0.04019007,  0.01607211,  0.04440255]]),
 'b1': np.array([[ -8.97523455e-07],
        [  8.15562092e-06],
        [  6.04810633e-07],
        [ -2.54560700e-06]]),
 'b2': np.array([[  9.14954378e-05]])}

    grads = {'dW1': np.array([[ 0.00023322, -0.00205423],
        [ 0.00082222, -0.00700776],
        [-0.00031831,  0.0028636 ],
        [-0.00092857,  0.00809933]]),
 'dW2': np.array([[ -1.75740039e-05,   3.70231337e-03,  -1.25683095e-03,
          -2.55715317e-03]]),
 'db1': np.array([[  1.05570087e-07],
        [ -3.81814487e-06],
        [ -1.90155145e-07],
        [  5.46467802e-07]]),
 'db2': np.array([[ -1.08923140e-05]])}
    return parameters, grads

def nn_model_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    Y_assess = np.random.randn(1, 3)
    return X_assess, Y_assess

def predict_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    parameters = {'W1': np.array([[-0.00615039,  0.0169021 ],
        [-0.02311792,  0.03137121],
        [-0.0169217 , -0.01752545],
        [ 0.00935436, -0.05018221]]),
     'W2': np.array([[-0.0104319 , -0.04019007,  0.01607211,  0.04440255]]),
     'b1': np.array([[ -8.97523455e-07],
        [  8.15562092e-06],
        [  6.04810633e-07],
        [ -2.54560700e-06]]),
     'b2': np.array([[  9.14954378e-05]])}
    return parameters, X_assess

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值