自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 收藏
  • 关注

原创 YOLOv8代码复现

改进模型后可以继续使用预训练参数pretrained(也可不使用),可加快收敛,但可能会出现键值不匹配的报错,需增加过滤键值对的代码。

2023-11-17 17:45:20 1057

原创 CSP代码报错踩坑(ModuleNotFoundError: No module named ‘utils.nms.gpu_nms‘)

ModuleNotFoundError: No module named 'utils.nms.gpu_nms'

2023-07-26 19:31:49 332

原创 Unet语义分割

初学语义分割,由于Unet是2015年发布,距今已有八年,以现在的视角看,难免存在许多缺陷。

2023-06-18 16:55:25 632

原创 YOLOv5改进网络:CBAM+小目标检测头

三个模型:yolov5s 添加注意力机制的yolov5s_CBAM 添加检测头的yolov5s_add。将三个模型通过对TinyPerson数据集训练,添加检测头的模型提升效果显著,添加注意力机制的模型略有提升。实验结果表明:添加CBAM模块后精确度P和召回率R略有提升,但map值却有所降低。红色框是新增小目标检测头的结构,融合了高层的语义信息,同时又有低层的位置信息。

2023-05-29 18:00:51 947 2

原创 YOLO训练results.csv文件可视化(原模型与改进模型对比可视化)

这里用到了两个csv文件(results.csv(改进模型训练80轮)和results100.csv(原模型训练100轮))一、单独一个文件可视化(源码对应utils文件夹下的plots.py文件的plot_results类)单独把代码拿出来建立py文件,注意上传文件路径以及文件保存路径。效果图展示:(results_vs.png文件)效果图展示:(results.png文件)

2023-05-24 21:37:14 5544 6

原创 如何利用colab的GPU训练模型

3、此时点击左边栏中,类似于文件夹的东西,就可以打开文件夹了,看看文件部署情况。gdrive就是我们配置的谷歌云盘。没有的话就去左侧刷新一下。1、将整个项目压缩后上传至谷歌云盘,使用谷歌云盘创建colab文件。4、将训练保存的权重文件等默认保存到谷歌云盘(Mydrive路径下)听说可以通过自动点击来减少掉线频率。

2023-05-24 11:00:10 274

原创 Faster R-CNN源码学习

提示:这里对文章进行总结:例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

2023-04-25 17:25:23 403

原创 R-CNN系列算法

R-CNN全称region with CNN features,用CNN取出区域中的特征,然后进行分类和回归。

2023-04-23 22:08:37 334

原创 目标检测算法

介绍目标检测的经典算法。

2023-04-23 11:19:19 238

原创 卷积神经网络

过滤器来提取特征,如垂直边缘,水平边缘和其它特征。

2023-04-15 10:00:46 55

原创 YOLOV3源码学习

提示:这里对文章进行总结:例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

2023-04-12 18:45:26 607

原创 深度学习学习笔记(七)

一、提示:这里对文章进行总结:例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

2023-04-11 09:04:59 188

原创 Resnet18实现CIFAR10数据集图像分类

Resnet18结构如下:可以看到,18层的网络有五个部分组成,从conv2开始,每层都有两个有残差块,并且每个残差块具有2个卷积层。其中,蓝色部分为conv2,然后往下依次按颜色划分为conv3、conv4,conv5。需要注意的是,从conv3开始,第一个残差块的第一个卷积层的stride为2,这是每层图片尺寸变化的原因。

2023-03-29 19:17:22 1150

原创 Resnet(残差网络)

人们认为卷积层和池化层的层数越多,获取到的图片特征信息越全,学习效果也就越好。1×1 卷积所实现的功能是遍历所有单元格,实现升维或降维的操作(使相加的两矩阵维度相等)梯度消失:若每一层的误差梯度小于1,反向传播时,网络越深,梯度越趋近于0。梯度爆炸:若每一层的误差梯度大于1,反向传播时,网络越深,梯度越来越大。通过大量的上述残差块的堆叠,形成深层神经网络。随着层数的增加,预测效果反而越来越差。1、梯度消失和梯度爆炸。

2023-03-28 21:27:37 170

原创 VGG16实现CIFAR10数据集

为了防止在梯度下降过程中出现梯度消失或爆炸,还需在每一层卷积后使用归一化处理batchnorm,也可防止过拟合,全连接层和线性层后使用dropout随机失活防止过拟合;此外还需加上非线性激活函数Relu。由tensorboard中的曲线趋势可见,提高epoch轮次,正确率还可进一步提升。简单神经网络实现CIFAR10图片分类效果较差,故将网络结构换成VGG16看看效果。更换model.py文件里的内容(1中博客的model),将Links改为VGG16。比起原代码多了数据增强的步骤(transform)

2023-03-28 19:38:28 814

原创 经典网络(LeNet-5、AlexNet、VGGNet)

经典网络(LeNet-5、AlexNet、VGGNet)

2023-03-28 11:42:06 222

原创 batch norm正则化

Batchnorm是深度网络中经常用来加速训练。

2023-03-27 22:04:14 142

原创 CIFAR10模型训练任务

pytorch学习

2023-03-22 22:01:57 1469 2

原创 MSE(均差损失函数loss)

【代码】MSE(均差损失函数loss)

2023-03-15 10:46:33 101

原创 knn(K-Neighbor-Nearest)算法

例子:在房价预测数据集中,有一个卧室数量(rm)与房屋价格(price)的对应表。

2023-03-14 20:35:14 73

原创 深度学习框架介绍

深度学习框架本质可以看作一个库(或包),是一个简单的写满了函数声明的py文件,使用户(调包侠)可以通过调用其中的函数轻松完成深度学习模型(神经网络)的创建和训练工作(不用另外定义函数公式,直接输入值,得到输出值)。

2023-03-14 16:21:13 491

原创 tensorflow2的tensorflow1不兼容语句解决方案

出错原因:配置环境tensorflow版本大于2.0,tf.placeholder是tensorflow1的内容,与环境不兼容。解决方案:暂时使用tensorflow1版本,在tf.后面添加compat.v1.

2023-03-13 21:27:10 156

原创 深度学习学习笔记(六)

一、padding二、卷积步长(strid)三、三维卷积四、单层卷积网络

2023-03-13 15:31:55 244

原创 深度学习学习笔记(五)

一、Mini-batch 梯度下降二、动量梯度下降法三、RMSprop四、Adam算法五、学习率衰减

2023-03-11 21:00:23 55

原创 深度学习学习笔记(四)

一、训练,验证,测试集二、偏差,方差(Bias /Variance)三、正则化四、归一化输入五、初始化参数

2023-03-08 21:38:56 314

原创 深度学习学习笔记(三)

一、神经网络的表示二、激活函数三、前向传播、反向传播公式总结:四、随机初始化

2023-03-03 21:19:33 192

原创 深度学习学习笔记(二)

神经网络的编程基础一、二分类(Binary Classification)二、逻辑回归(Logistic Regression)三、逻辑回归的代价函数(Logistic Regression Cost Function)四、梯度下降法(Gradient Descent)五、m 个样本的梯度下降六、logistic 损失函数的解释

2023-03-01 21:43:53 116

原创 深度学习学习笔记(一)

什么是神经网络神经网络的监督学习。

2023-03-01 11:12:17 69

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除