题目来源:哈三中的一道数学作业题
(开幕雷击)
介绍背景(初中生可以直接跳过这里)
事情是这样的:
本人高一,没上过补课班也没有预习,刚学向量,留了数学作业,遇到一道向量题,用几何方法做了两节晚自习没做出来,突发奇想把向量题改成几何题难一难初中的学弟学妹们…
首先把原题贴出来吧,尊重原题。
已知平面向量a⃗,b⃗,c⃗\vec a,\vec b,\vec ca,b,c满足∣a⃗∣=∣b⃗∣=3\left|\vec a\right|=\left|\vec b\right|=3∣a∣=b=3,∣c⃗∣=2\left|\vec c\right|=2∣c∣=2,(a⃗−c⃗)⋅(b⃗−c⃗)=0\left(\vec a-\vec c\right)\cdot\left(\vec b-\vec c\right)=0(a−c)⋅(b−c)=0,则∣a⃗−b⃗∣\left|\vec a-\vec b\right|a−b的最大值为?
原题是一道选择题,选项我就不给出来了,作为平时练习题应当当填空做吧。
题并不难,我感觉我就是猛住了,这题被我班同学秒了(悲
我的第一思维过程就是先纯代数算向量,但是我没算出来,然后我画了一个图,然后把这道题转化成了下面的几何问题:(初中生可以从这开始看了)
题目
已知△ABC\triangle ABC△ABC中∠A=90∘\angle A=90^\circ∠A=90∘,△ABC\triangle ABC△ABC内有一点DDD,连接ADADAD、BDBDBD、CDCDCD,若AD=2AD=2AD=2,BD=CD=3BD=CD=3BD=CD=3,求BC的最大值。
答案
14+2\sqrt{14}+214+2
解析
最终我还是做出来了,我撤回我刚才说“难一难初中生”的话。
这题要是能看出来很简单,要是看不出来的话得想老半天。
个人感觉有点逆向思维。
我给一个面向初中生的解析:
过DDD作DH⊥BCDH\perp BCDH⊥BC
∵BC\because BC∵BC最大 ∴CH\therefore CH∴CH最大
根据勾股定理,DHDHDH最小
∵AD=2为定值\because AD=2为定值∵AD=2为定值
∴AD+DH\therefore AD+DH∴AD+DH最小
AAA、DDD、HHH共线时AD+DHAD+DHAD+DH最小
由BD=CDBD=CDBD=CD易证ADHADHADH垂直平分BCBCBC
易证△ABC\triangle ABC△ABC为等腰直角三角形
设DH=tDH=tDH=t,CH=AH=t+2CH=AH=t+2CH=AH=t+2
在Rt△ABCRt\triangle ABCRt△ABC中根据勾股定理得t2+(t+2)2=9t^2+(t+2)^2=9t2+(t+2)2=9
解得t=142−1t=\frac{\sqrt{14}}{2}-1t=214−1
所求为2(t+2)=14+22(t+2)=\sqrt{14}+22(t+2)=14+2