哈尔滨初中几何:一道逆向思维几何题

题目来源:哈三中的一道数学作业题
(开幕雷击)

介绍背景(初中生可以直接跳过这里)

事情是这样的:
本人高一,没上过补课班也没有预习,刚学向量,留了数学作业,遇到一道向量题,用几何方法做了两节晚自习没做出来,突发奇想把向量题改成几何题难一难初中的学弟学妹们…

首先把原题贴出来吧,尊重原题。
已知平面向量a⃗,b⃗,c⃗\vec a,\vec b,\vec ca,b,c满足∣a⃗∣=∣b⃗∣=3\left|\vec a\right|=\left|\vec b\right|=3a=b=3∣c⃗∣=2\left|\vec c\right|=2c=2(a⃗−c⃗)⋅(b⃗−c⃗)=0\left(\vec a-\vec c\right)\cdot\left(\vec b-\vec c\right)=0(ac)(bc)=0,则∣a⃗−b⃗∣\left|\vec a-\vec b\right|ab的最大值为?

原题是一道选择题,选项我就不给出来了,作为平时练习题应当当填空做吧。

题并不难,我感觉我就是猛住了,这题被我班同学秒了(悲

我的第一思维过程就是先纯代数算向量,但是我没算出来,然后我画了一个图,然后把这道题转化成了下面的几何问题:(初中生可以从这开始看了)

题目

请添加图片描述
已知△ABC\triangle ABCABC∠A=90∘\angle A=90^\circA=90△ABC\triangle ABCABC内有一点DDD,连接ADADADBDBDBDCDCDCD,若AD=2AD=2AD=2BD=CD=3BD=CD=3BD=CD=3,求BC的最大值。

答案

14+2\sqrt{14}+214+2

解析

最终我还是做出来了,我撤回我刚才说“难一难初中生”的话。
这题要是能看出来很简单,要是看不出来的话得想老半天。
个人感觉有点逆向思维。

我给一个面向初中生的解析:
DDDDH⊥BCDH\perp BCDHBC
∵BC\because BCBC最大 ∴CH\therefore CHCH最大
根据勾股定理,DHDHDH最小
∵AD=2为定值\because AD=2为定值AD=2为定值
∴AD+DH\therefore AD+DHAD+DH最小
AAADDDHHH共线时AD+DHAD+DHAD+DH最小
BD=CDBD=CDBD=CD易证ADHADHADH垂直平分BCBCBC
易证△ABC\triangle ABCABC为等腰直角三角形
DH=tDH=tDH=tCH=AH=t+2CH=AH=t+2CH=AH=t+2
Rt△ABCRt\triangle ABCRtABC中根据勾股定理得t2+(t+2)2=9t^2+(t+2)^2=9t2+(t+2)2=9
解得t=142−1t=\frac{\sqrt{14}}{2}-1t=2141
所求为2(t+2)=14+22(t+2)=\sqrt{14}+22(t+2)=14+2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值