自修不定积分:吴传生《经济数学 微积分》第四版 总习题五(二)

书接上文:自修不定积分:吴传生《经济数学 微积分》第四版 总习题五(一)
( 16 ) ∫ ln ⁡ ( 1 + x 2 ) d x = ∫ ln ⁡ [ ( 1 + i x ) ( 1 − i x ) ] d x = ∫ ln ⁡ ( 1 + i x ) + ln ⁡ ( 1 − i x ) ] d x = ∫ ln ⁡ ( 1 + i x ) d x + ∫ ln ⁡ ( 1 − i x ) d x = − i ∫ ln ⁡ ( 1 + i x ) d ( 1 + i x ) + i ∫ ln ⁡ ( 1 − i x ) d ( 1 − i x ) = − i ( 1 + i x ) [ ln ⁡ ( 1 + i x ) − 1 ] + i ( 1 − i x ) [ ln ⁡ ( 1 − i x ) − 1 ] + C = ( − i + x ) ln ⁡ ( 1 + i x ) + ( i − x ) + ( i + x ) ln ⁡ ( 1 − i x ) − ( i + x ) + C = − 2 x − i ln ⁡ ( 1 + i x ) + x ln ⁡ ( 1 + i x ) + i ln ⁡ ( 1 − i x ) + x ln ⁡ ( 1 − i x ) + C = − 2 x + x ln ⁡ ( x 2 + 1 ) + i [ ln ⁡ ( 1 − i x ) − ln ⁡ ( 1 + i x ) ] + C = − 2 x + x ln ⁡ ( x 2 + 1 ) + i { ln ⁡ [ 1 + x 2 ( 1 1 + x 2 + − x i 1 + x 2 ) ] − ln ⁡ [ 1 + x 2 ( 1 1 + x 2 + x i 1 + x 2 ) ] } + C = { − 2 x + x ln ⁡ ( x 2 + 1 ) + i [ ln ⁡ 1 + x 2 + ln ⁡ ( cos ⁡ α + i sin ⁡ α ) − ln ⁡ 1 + x 2 − ln ⁡ ( cos ⁡ β + i sin ⁡ β ) ] + C } tan ⁡ α = − x , tan ⁡ β = x = − 2 x + x ln ⁡ ( x 2 + 1 ) + i ( i α − i β ) + C = − 2 x + x ln ⁡ ( x 2 + 1 ) + − α + β + C = − 2 x + x ln ⁡ ( x 2 + 1 ) + 2 arctan ⁡ x + C \begin{aligned} (16)\int\ln\left(1+x^2\right)\mathrm dx &=\int\ln\left[\left(1+\mathrm ix\right)\left(1-\mathrm ix\right)\right]\mathrm dx\\ &=\int\ln(1+\mathrm ix)+\ln(1-\mathrm ix)]\mathrm dx\\ &=\int\ln(1+\mathrm ix)\mathrm dx+\int\ln(1-\mathrm ix)\mathrm dx\\ &=-\mathrm i\int\ln(1+\mathrm ix)\mathrm d(1+\mathrm ix)+\mathrm i\int\ln(1-\mathrm ix)\mathrm d(1-\mathrm ix)\\ &=-\mathrm i(1+\mathrm ix)[\ln(1+\mathrm ix)-1]+\mathrm i(1-\mathrm ix)[\ln(1-\mathrm ix)-1]+C\\ &=(-\mathrm i+x)\ln(1+\mathrm ix)+(\mathrm i-x)+(\mathrm i+x)\ln(1-\mathrm ix)-(\mathrm i+x)+C\\ &=-2x-\mathrm i\ln(1+\mathrm ix)+x\ln(1+\mathrm ix)+\mathrm i\ln(1-\mathrm ix)+x\ln(1-\mathrm ix)+C\\ &=-2x+x\ln\left(x^2+1\right)+\mathrm i[\ln(1-\mathrm ix)-\ln(1+\mathrm ix)]+C\\ &=-2x+x\ln\left(x^2+1\right)+\mathrm i\left\{\ln\left[\sqrt{1+x^2}\left(\frac{1}{\sqrt{1+x^2}}+\frac{-x\mathrm i}{\sqrt{1+x^2}}\right)\right]-\ln\left[\sqrt{1+x^2}\left(\frac{1}{\sqrt{1+x^2}}+\frac{x\mathrm i}{\sqrt{1+x^2}}\right)\right]\right\}+C\\ &=\left\{-2x+x\ln\left(x^2+1\right)+\mathrm i\left[\ln\sqrt{1+x^2}+\ln(\cos\alpha+\mathrm i\sin\alpha)-\ln\sqrt{1+x^2}-\ln(\cos\beta+\mathrm i\sin\beta)\right]+C\right\}_{\tan\alpha=-x,\tan\beta=x}\\ &=-2x+x\ln\left(x^2+1\right)+\mathrm i(\mathrm i\alpha-\mathrm i\beta)+C\\ &=-2x+x\ln\left(x^2+1\right)+-\alpha+\beta+C\\ &=-2x+x\ln\left(x^2+1\right)+2\arctan x+C \end{aligned} (16)ln(1+x2)dx=ln[(1+ix)(1ix)]dx=ln(1+ix)+ln(1ix)]dx=ln(1+ix)dx+ln(1ix)dx=iln(1+ix)d(1+ix)+iln(1ix)d(1ix)=i(1+ix)[ln(1+ix)1]+i(1ix)[ln(1ix)1]+C=(i+x)ln(1+ix)+(ix)+(i+x)ln(1ix)(i+x)+C=2xiln(1+ix)+xln(1+ix)+iln(1ix)+xln(1ix)+C=2x+xln(x2+1)+i[ln(1ix)ln(1+ix)]+C=2x+xln(x2+1)+i{ ln[1+x2 (1+x2 1+1+x2 xi)]ln[1+x2 (1+x2 1+1+x2 xi)]}+C={ 2x+xln(x2+1)+i[ln1+x2 +ln(cosα+isinα)ln1+x2 ln(cosβ+isinβ)]+C}tanα=x,tanβ=x=2x+xln(x2+1)+i(iαiβ)+C=2x+xln(x2+1)+α+β+C=2x+xln(x2+1)+2arctanx+C

( 17 ) ∫ arctan ⁡ x d x = ( ∫ u d tan ⁡ 2 u ) tan ⁡ 2 u = x = u tan ⁡ 2 u − ∫ tan ⁡ 2 u d u = u tan ⁡ 2 u − ∫ tan ⁡ u sec ⁡ u ⋅ tan ⁡ u sec ⁡ u d u = u tan ⁡ 2 u − ∫ sin ⁡ u d sec ⁡ u = u tan ⁡ 2 u − sin ⁡ u sec ⁡ u + ∫ sec ⁡ u cos ⁡ u d u = u tan ⁡ 2 u − tan ⁡ u + u + C = x arctan ⁡ x − x + arctan ⁡ x + C \begin{aligned} (17)\int\arctan\sqrt x\mathrm dx &=\left(\int u\mathrm d\tan^2u\right)_{\tan^2u=x}\\ &=u\tan^2u-\int\tan^2u\mathrm du\\ &=u\tan^2u-\int\frac{\tan u}{\sec u}\cdot\tan u\sec u\mathrm du\\ &=u\tan^2u-\int\sin u\mathrm d\sec u\\ &=u\tan^2u-\sin u\sec u+\int\sec u\cos u\mathrm du\\ &=u\tan^2u-\tan u+u+C\\ &=x\arctan\sqrt x-\sqrt x+\arctan\sqrt x+C \end{aligned} (17)arctanx dx=(udtan2u)tan2u=x=utan2utan2udu=utan2usecutanutanusecudu=utan2usinudsecu=utan2usinusecu+secucosudu=utan2utanu+u+C=xarctanx x +arctanx +C

( 18 ) ∫ 1 + cos ⁡ 2 x sin ⁡ 2 x d x = ∫ 1 + cos ⁡ 2 x − sin ⁡ 2 x 2 cos ⁡ x sin ⁡ x d x = ∫ cos ⁡ 2 x + sin ⁡ 2 x + cos ⁡ 2 x − sin ⁡ 2 x 2 cos ⁡ x sin ⁡ x d x = ∫ 2 cos ⁡ x 2 cos ⁡ x sin ⁡ x d x = 2 2 ∫ csc ⁡ x d x = 2 2 ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \begin{aligned} (18)\int\frac{\sqrt{1+\cos2x}}{\sin2x}\mathrm dx &=\int\frac{\sqrt{1+\cos^2x-\sin^2x}}{2\cos x\sin x}\mathrm dx\\ &=\int\frac{\sqrt{\cos^2x+\sin^2x+\cos^2x-\sin^2x}}{2\cos x\sin x}\mathrm dx\\ &=\int\frac{\sqrt{2}\cos x}{2\cos x\sin x}\mathrm dx\\ &=\frac{\sqrt2}{2}\int\csc x\mathrm dx\\ &=\frac{\sqrt2}{2}\ln|\csc x-\cot x|+C \end{aligned} (18)sin2x1+cos2x dx=2cosxsinx1+cos2xsin2x dx=2cosxsinxcos2x+sin2x+cos2xsin2x dx=2cosxsinx2 cosxdx=22 cscxdx=22 lncscxcotx+C

( 19 ) ∫ x + 2 sin ⁡ x cos ⁡ x 1 + cos ⁡ 2 x d x = ∫ x + 2 sin ⁡ x cos ⁡ x 2 cos ⁡ 2 x d x = 1 2 ∫ x cos ⁡ 2 x d x + ∫ tan ⁡ x d x = 1 2 ∫ x sec ⁡ 2 x d x + ∫ tan ⁡ x d x = 1 2 ∫ x ( tan ⁡ 2 x + 1 ) d x + ∫ tan ⁡ x d x = 1 2 ∫ x tan ⁡ 2 x d x + 1 2 ∫ x d x + ∫ tan ⁡ x d x = 1 2 ∫ x ⋅ tan ⁡ x sec ⁡ x ⋅ tan ⁡ x sec ⁡ x d x + 1 2 ∫ x d x + ∫ tan ⁡ x d x = 1 2 x tan ⁡ x − 1 2 ∫ sec ⁡ x d ( x sin ⁡ x ) + 1 2 ∫ x d x + ∫ tan ⁡ x d x = 1 2 x tan ⁡ x − 1 2 ∫ sec ⁡ x ( sin ⁡ x + x cos ⁡ x ) d x + 1 2 ∫ x d x + ∫ tan ⁡ x d x = 1 2 x tan ⁡ x − 1 2 ∫ tan ⁡ x d x − 1 2 ∫ x d x + 1 2 ∫ x d x + ∫ tan ⁡ x d x = 1 2 x tan ⁡ x + 1 2 ∫ tan ⁡ x d x = 1 2 x tan ⁡ x − 1 2 ln ⁡ ∣ cos ⁡ x ∣ + C \begin{aligned} (19)\int\frac{x+2\sin x\cos x}{1+\cos 2x}\mathrm dx &=\int\frac{x+2\sin x\cos x}{2\cos^2x}\mathrm dx\\ &=\frac{1}{2}\int \frac{x}{\cos^2x}\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}\int x\sec^2x\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}\int x\left(\tan^2x+1\right)\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}\int x\tan^2x\mathrm dx+\frac{1}{2}\int x\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}\int x\cdot\frac{\tan x}{\sec x}\cdot\tan x\sec x\mathrm dx+\frac{1}{2}\int x\mathrm dx+\int\tan x\mathrm{d}x\\ &=\frac{1}{2}x\tan x-\frac{1}{2}\int\sec x\mathrm d(x\sin x)+\frac{1}{2}\int x\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}x\tan x-\frac{1}{2}\int\sec x(\sin x+x\cos x)\mathrm dx+\frac{1}{2}\int x\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}x\tan x-\frac{1}{2}\int\tan x\mathrm dx-\frac{1}{2}\int x\mathrm dx+\frac{1}{2}\int x\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}x\tan x+\frac{1}{2}\int\tan x\mathrm dx\\ &=\frac{1}{2}x\tan x-\frac{1}{2}\ln|\cos x|+C \end{aligned} (19)1+cos2xx+2sinxcosxdx=2cos2xx+2sinxcosxdx=21cos2xxdx+tanxdx=21xsec2xdx+tanxdx=21x(tan2x+1)dx+tanxdx=21

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值