书接上文:自修不定积分:吴传生《经济数学 微积分》第四版 总习题五(一)
( 16 ) ∫ ln ( 1 + x 2 ) d x = ∫ ln [ ( 1 + i x ) ( 1 − i x ) ] d x = ∫ ln ( 1 + i x ) + ln ( 1 − i x ) ] d x = ∫ ln ( 1 + i x ) d x + ∫ ln ( 1 − i x ) d x = − i ∫ ln ( 1 + i x ) d ( 1 + i x ) + i ∫ ln ( 1 − i x ) d ( 1 − i x ) = − i ( 1 + i x ) [ ln ( 1 + i x ) − 1 ] + i ( 1 − i x ) [ ln ( 1 − i x ) − 1 ] + C = ( − i + x ) ln ( 1 + i x ) + ( i − x ) + ( i + x ) ln ( 1 − i x ) − ( i + x ) + C = − 2 x − i ln ( 1 + i x ) + x ln ( 1 + i x ) + i ln ( 1 − i x ) + x ln ( 1 − i x ) + C = − 2 x + x ln ( x 2 + 1 ) + i [ ln ( 1 − i x ) − ln ( 1 + i x ) ] + C = − 2 x + x ln ( x 2 + 1 ) + i { ln [ 1 + x 2 ( 1 1 + x 2 + − x i 1 + x 2 ) ] − ln [ 1 + x 2 ( 1 1 + x 2 + x i 1 + x 2 ) ] } + C = { − 2 x + x ln ( x 2 + 1 ) + i [ ln 1 + x 2 + ln ( cos α + i sin α ) − ln 1 + x 2 − ln ( cos β + i sin β ) ] + C } tan α = − x , tan β = x = − 2 x + x ln ( x 2 + 1 ) + i ( i α − i β ) + C = − 2 x + x ln ( x 2 + 1 ) + − α + β + C = − 2 x + x ln ( x 2 + 1 ) + 2 arctan x + C \begin{aligned} (16)\int\ln\left(1+x^2\right)\mathrm dx &=\int\ln\left[\left(1+\mathrm ix\right)\left(1-\mathrm ix\right)\right]\mathrm dx\\ &=\int\ln(1+\mathrm ix)+\ln(1-\mathrm ix)]\mathrm dx\\ &=\int\ln(1+\mathrm ix)\mathrm dx+\int\ln(1-\mathrm ix)\mathrm dx\\ &=-\mathrm i\int\ln(1+\mathrm ix)\mathrm d(1+\mathrm ix)+\mathrm i\int\ln(1-\mathrm ix)\mathrm d(1-\mathrm ix)\\ &=-\mathrm i(1+\mathrm ix)[\ln(1+\mathrm ix)-1]+\mathrm i(1-\mathrm ix)[\ln(1-\mathrm ix)-1]+C\\ &=(-\mathrm i+x)\ln(1+\mathrm ix)+(\mathrm i-x)+(\mathrm i+x)\ln(1-\mathrm ix)-(\mathrm i+x)+C\\ &=-2x-\mathrm i\ln(1+\mathrm ix)+x\ln(1+\mathrm ix)+\mathrm i\ln(1-\mathrm ix)+x\ln(1-\mathrm ix)+C\\ &=-2x+x\ln\left(x^2+1\right)+\mathrm i[\ln(1-\mathrm ix)-\ln(1+\mathrm ix)]+C\\ &=-2x+x\ln\left(x^2+1\right)+\mathrm i\left\{\ln\left[\sqrt{1+x^2}\left(\frac{1}{\sqrt{1+x^2}}+\frac{-x\mathrm i}{\sqrt{1+x^2}}\right)\right]-\ln\left[\sqrt{1+x^2}\left(\frac{1}{\sqrt{1+x^2}}+\frac{x\mathrm i}{\sqrt{1+x^2}}\right)\right]\right\}+C\\ &=\left\{-2x+x\ln\left(x^2+1\right)+\mathrm i\left[\ln\sqrt{1+x^2}+\ln(\cos\alpha+\mathrm i\sin\alpha)-\ln\sqrt{1+x^2}-\ln(\cos\beta+\mathrm i\sin\beta)\right]+C\right\}_{\tan\alpha=-x,\tan\beta=x}\\ &=-2x+x\ln\left(x^2+1\right)+\mathrm i(\mathrm i\alpha-\mathrm i\beta)+C\\ &=-2x+x\ln\left(x^2+1\right)+-\alpha+\beta+C\\ &=-2x+x\ln\left(x^2+1\right)+2\arctan x+C \end{aligned} (16)∫ln(1+x2)dx=∫ln[(1+ix)(1−ix)]dx=∫ln(1+ix)+ln(1−ix)]dx=∫ln(1+ix)dx+∫ln(1−ix)dx=−i∫ln(1+ix)d(1+ix)+i∫ln(1−ix)d(1−ix)=−i(1+ix)[ln(1+ix)−1]+i(1−ix)[ln(1−ix)−1]+C=(−i+x)ln(1+ix)+(i−x)+(i+x)ln(1−ix)−(i+x)+C=−2x−iln(1+ix)+xln(1+ix)+iln(1−ix)+xln(1−ix)+C=−2x+xln(x2+1)+i[ln(1−ix)−ln(1+ix)]+C=−2x+xln(x2+1)+i{
ln[1+x2(1+x21+1+x2−xi)]−ln[1+x2(1+x21+1+x2xi)]}+C={
−2x+xln(x2+1)+i[ln1+x2+ln(cosα+isinα)−ln1+x2−ln(cosβ+isinβ)]+C}tanα=−x,tanβ=x=−2x+xln(x2+1)+i(iα−iβ)+C=−2x+xln(x2+1)+−α+β+C=−2x+xln(x2+1)+2arctanx+C
( 17 ) ∫ arctan x d x = ( ∫ u d tan 2 u ) tan 2 u = x = u tan 2 u − ∫ tan 2 u d u = u tan 2 u − ∫ tan u sec u ⋅ tan u sec u d u = u tan 2 u − ∫ sin u d sec u = u tan 2 u − sin u sec u + ∫ sec u cos u d u = u tan 2 u − tan u + u + C = x arctan x − x + arctan x + C \begin{aligned} (17)\int\arctan\sqrt x\mathrm dx &=\left(\int u\mathrm d\tan^2u\right)_{\tan^2u=x}\\ &=u\tan^2u-\int\tan^2u\mathrm du\\ &=u\tan^2u-\int\frac{\tan u}{\sec u}\cdot\tan u\sec u\mathrm du\\ &=u\tan^2u-\int\sin u\mathrm d\sec u\\ &=u\tan^2u-\sin u\sec u+\int\sec u\cos u\mathrm du\\ &=u\tan^2u-\tan u+u+C\\ &=x\arctan\sqrt x-\sqrt x+\arctan\sqrt x+C \end{aligned} (17)∫arctanxdx=(∫udtan2u)tan2u=x=utan2u−∫tan2udu=utan2u−∫secutanu⋅tanusecudu=utan2u−∫sinudsecu=utan2u−sinusecu+∫secucosudu=utan2u−tanu+u+C=xarctanx−x+arctanx+C
( 18 ) ∫ 1 + cos 2 x sin 2 x d x = ∫ 1 + cos 2 x − sin 2 x 2 cos x sin x d x = ∫ cos 2 x + sin 2 x + cos 2 x − sin 2 x 2 cos x sin x d x = ∫ 2 cos x 2 cos x sin x d x = 2 2 ∫ csc x d x = 2 2 ln ∣ csc x − cot x ∣ + C \begin{aligned} (18)\int\frac{\sqrt{1+\cos2x}}{\sin2x}\mathrm dx &=\int\frac{\sqrt{1+\cos^2x-\sin^2x}}{2\cos x\sin x}\mathrm dx\\ &=\int\frac{\sqrt{\cos^2x+\sin^2x+\cos^2x-\sin^2x}}{2\cos x\sin x}\mathrm dx\\ &=\int\frac{\sqrt{2}\cos x}{2\cos x\sin x}\mathrm dx\\ &=\frac{\sqrt2}{2}\int\csc x\mathrm dx\\ &=\frac{\sqrt2}{2}\ln|\csc x-\cot x|+C \end{aligned} (18)∫sin2x1+cos2xdx=∫2cosxsinx1+cos2x−sin2xdx=∫2cosxsinxcos2x+sin2x+cos2x−sin2xdx=∫2cosxsinx2cosxdx=22∫cscxdx=22ln∣cscx−cotx∣+C
( 19 ) ∫ x + 2 sin x cos x 1 + cos 2 x d x = ∫ x + 2 sin x cos x 2 cos 2 x d x = 1 2 ∫ x cos 2 x d x + ∫ tan x d x = 1 2 ∫ x sec 2 x d x + ∫ tan x d x = 1 2 ∫ x ( tan 2 x + 1 ) d x + ∫ tan x d x = 1 2 ∫ x tan 2 x d x + 1 2 ∫ x d x + ∫ tan x d x = 1 2 ∫ x ⋅ tan x sec x ⋅ tan x sec x d x + 1 2 ∫ x d x + ∫ tan x d x = 1 2 x tan x − 1 2 ∫ sec x d ( x sin x ) + 1 2 ∫ x d x + ∫ tan x d x = 1 2 x tan x − 1 2 ∫ sec x ( sin x + x cos x ) d x + 1 2 ∫ x d x + ∫ tan x d x = 1 2 x tan x − 1 2 ∫ tan x d x − 1 2 ∫ x d x + 1 2 ∫ x d x + ∫ tan x d x = 1 2 x tan x + 1 2 ∫ tan x d x = 1 2 x tan x − 1 2 ln ∣ cos x ∣ + C \begin{aligned} (19)\int\frac{x+2\sin x\cos x}{1+\cos 2x}\mathrm dx &=\int\frac{x+2\sin x\cos x}{2\cos^2x}\mathrm dx\\ &=\frac{1}{2}\int \frac{x}{\cos^2x}\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}\int x\sec^2x\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}\int x\left(\tan^2x+1\right)\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}\int x\tan^2x\mathrm dx+\frac{1}{2}\int x\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}\int x\cdot\frac{\tan x}{\sec x}\cdot\tan x\sec x\mathrm dx+\frac{1}{2}\int x\mathrm dx+\int\tan x\mathrm{d}x\\ &=\frac{1}{2}x\tan x-\frac{1}{2}\int\sec x\mathrm d(x\sin x)+\frac{1}{2}\int x\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}x\tan x-\frac{1}{2}\int\sec x(\sin x+x\cos x)\mathrm dx+\frac{1}{2}\int x\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}x\tan x-\frac{1}{2}\int\tan x\mathrm dx-\frac{1}{2}\int x\mathrm dx+\frac{1}{2}\int x\mathrm dx+\int\tan x\mathrm dx\\ &=\frac{1}{2}x\tan x+\frac{1}{2}\int\tan x\mathrm dx\\ &=\frac{1}{2}x\tan x-\frac{1}{2}\ln|\cos x|+C \end{aligned} (19)∫1+cos2xx+2sinxcosxdx=∫2cos2xx+2sinxcosxdx=21∫cos2xxdx+∫tanxdx=21∫xsec2xdx+∫tanxdx=21∫x(tan2x+1)dx+∫tanxdx=21