问题:一辆质量为m的汽车在t=0时以恒定功率 P P P由静止启动,阻力恒为 f f f,求汽车瞬时速度v与时间t的定量关系。
上物理课没听课算这个东西,没被点名但是被物理老师友善地提醒了
受力分析得
F
−
f
=
m
a
F-f=ma
F−f=ma得
F
=
f
+
m
a
F=f+ma
F=f+ma
由
P
=
F
v
P=Fv
P=Fv得
v
=
P
f
+
m
a
=
P
f
+
m
v
′
v=\frac{P}{f+ma}=\frac{P}{f+mv'}
v=f+maP=f+mv′P(
v
′
v'
v′指
v
v
v关于
t
t
t的导数)
解微分方程,
f
+
m
v
′
=
P
v
m
v
′
=
P
v
−
f
v
′
=
P
−
f
v
m
v
d
v
d
t
=
P
−
f
v
m
v
d
t
d
v
=
m
v
P
−
f
v
d
t
=
m
v
P
−
f
v
d
v
\begin{aligned} f+mv'&=\frac P v\\ mv'&=\frac P v-f\\ v'&=\frac{P-fv}{mv}\\ \frac{\mathrm dv}{\mathrm dt}&=\frac{P-fv}{mv}\\ \frac{\mathrm dt}{\mathrm dv}&=\frac{mv}{P-fv}\\ \mathrm dt&=\frac{mv}{P-fv}\mathrm dv \end{aligned}
f+mv′mv′v′dtdvdvdtdt=vP=vP−f=mvP−fv=mvP−fv=P−fvmv=P−fvmvdv
对两边积分,
t
=
∫
m
v
P
−
f
v
d
v
=
∫
m
(
v
−
P
f
)
+
m
P
f
P
−
f
v
d
v
=
−
m
v
f
+
m
P
f
∫
d
v
P
−
f
v
=
−
m
v
f
−
m
P
f
2
∫
d
(
P
−
f
v
)
P
−
f
v
=
−
m
v
f
−
m
P
f
2
ln
(
P
−
f
v
)
+
C
,
C
∈
R
\begin{aligned} t&=\int\frac{mv}{P-fv}\mathrm dv\\ &=\int\frac{m\left(v-\frac P f\right)+\frac{mP}{f}}{P-fv}\mathrm dv\\ &=-\frac {mv} f+\frac{mP}f\int\frac{\mathrm dv}{P-fv}\\ &=-\frac {mv} f-\frac{mP}{f^2}\int\frac{\mathrm d(P-fv)}{P-fv}\\ &=-\frac {mv} f-\frac{mP}{f^2}\ln(P-fv)+C,C\in\mathbb R\\ \end{aligned}
t=∫P−fvmvdv=∫P−fvm(v−fP)+fmPdv=−fmv+fmP∫P−fvdv=−fmv−f2mP∫P−fvd(P−fv)=−fmv−f2mPln(P−fv)+C,C∈R
当
t
=
0
t=0
t=0时
v
=
0
v=0
v=0,代入上式求出常数
C
C
C,
C
=
m
P
f
2
ln
P
C=\frac{mP}{f^2}\ln P
C=f2mPlnP因此在汽车加速阶段,
t
t
t与
v
v
v的定量关系为
t
=
m
P
f
2
ln
P
P
−
f
v
−
m
v
f
t=\frac{mP}{f^2}\ln\frac P{P-fv}-\frac {mv} f
t=f2mPlnP−fvP−fmv
用几何画板画出的大致图像(
x
x
x值域应为
R
+
\mathbb R^+
R+,但几何画板计算精度有限只画出了部分图像)
物理课上讲的是汽车先加速后匀速,即 v v v先增大, a a a先减小,到某一时刻 v v v不再变化, a = 0 a=0 a=0。所以我进而想要求出加速到匀速所需时间。
用导数的方法、代入
v
=
P
f
v=\frac P f
v=fP的方法、极限的方法均未求出加速到匀速所需时间。
即速度永远在增大并趋近于匀速,加速度只是在减小但永远不会到
0
0
0。
高中阶段错误地定性分析(或者称之为近似地)认为先加速后匀速。考试的时候不考定量,近似认为
a
a
a能减小到
0
0
0,运动后期达到匀速。