关于汽车匀功率启动v-t的定量关系

文章详细解析了一辆以恒定功率启动的汽车,其瞬时速度v与时间t的定量关系。通过受力分析和动力学公式,得出v=(P/(f+ma))的表达式,并进一步利用微分方程解决速度随时间变化的问题。最终得到t=(mP/f^2)ln(P/(P-fv))-(mv/f)的关系,讨论了汽车从加速到匀速过渡的物理过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:一辆质量为m的汽车在t=0时以恒定功率 P P P由静止启动,阻力恒为 f f f,求汽车瞬时速度v与时间t的定量关系。

上物理课没听课算这个东西,没被点名但是被物理老师友善地提醒了

受力分析得 F − f = m a F-f=ma Ff=ma F = f + m a F=f+ma F=f+ma
P = F v P=Fv P=Fv v = P f + m a = P f + m v ′ v=\frac{P}{f+ma}=\frac{P}{f+mv'} v=f+maP=f+mvP v ′ v' v v v v关于 t t t的导数)
解微分方程, f + m v ′ = P v m v ′ = P v − f v ′ = P − f v m v d v d t = P − f v m v d t d v = m v P − f v d t = m v P − f v d v \begin{aligned} f+mv'&=\frac P v\\ mv'&=\frac P v-f\\ v'&=\frac{P-fv}{mv}\\ \frac{\mathrm dv}{\mathrm dt}&=\frac{P-fv}{mv}\\ \frac{\mathrm dt}{\mathrm dv}&=\frac{mv}{P-fv}\\ \mathrm dt&=\frac{mv}{P-fv}\mathrm dv \end{aligned} f+mvmvvdtdvdvdtdt=vP=vPf=mvPfv=mvPfv=Pfvmv=Pfvmvdv
对两边积分, t = ∫ m v P − f v d v = ∫ m ( v − P f ) + m P f P − f v d v = − m v f + m P f ∫ d v P − f v = − m v f − m P f 2 ∫ d ( P − f v ) P − f v = − m v f − m P f 2 ln ⁡ ( P − f v ) + C , C ∈ R \begin{aligned} t&=\int\frac{mv}{P-fv}\mathrm dv\\ &=\int\frac{m\left(v-\frac P f\right)+\frac{mP}{f}}{P-fv}\mathrm dv\\ &=-\frac {mv} f+\frac{mP}f\int\frac{\mathrm dv}{P-fv}\\ &=-\frac {mv} f-\frac{mP}{f^2}\int\frac{\mathrm d(P-fv)}{P-fv}\\ &=-\frac {mv} f-\frac{mP}{f^2}\ln(P-fv)+C,C\in\mathbb R\\ \end{aligned} t=Pfvmvdv=Pfvm(vfP)+fmPdv=fmv+fmPPfvdv=fmvf2mPPfvd(Pfv)=fmvf2mPln(Pfv)+C,CR
t = 0 t=0 t=0 v = 0 v=0 v=0,代入上式求出常数 C C C C = m P f 2 ln ⁡ P C=\frac{mP}{f^2}\ln P C=f2mPlnP因此在汽车加速阶段, t t t v v v的定量关系为 t = m P f 2 ln ⁡ P P − f v − m v f t=\frac{mP}{f^2}\ln\frac P{P-fv}-\frac {mv} f t=f2mPlnPfvPfmv

用几何画板画出的大致图像( x x x值域应为 R + \mathbb R^+ R+,但几何画板计算精度有限只画出了部分图像)

物理课上讲的是汽车先加速后匀速,即 v v v先增大, a a a先减小,到某一时刻 v v v不再变化, a = 0 a=0 a=0。所以我进而想要求出加速到匀速所需时间。

用导数的方法、代入 v = P f v=\frac P f v=fP的方法、极限的方法均未求出加速到匀速所需时间。
即速度永远在增大并趋近于匀速,加速度只是在减小但永远不会到 0 0 0
高中阶段错误地定性分析(或者称之为近似地)认为先加速后匀速。考试的时候不考定量,近似认为 a a a能减小到 0 0 0,运动后期达到匀速。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值