神经网络与深度学习 笔记(二)

一、为什么需要深度学习?

全连接网络的问题

  • 链接权过多,算的慢,难收敛,同时可能进入局部极小值,也容易产生_过拟合_问题
    e.g.输入为1000×1000图像 ,隐含层有 1M 个节点,则输入->隐含层间有1×1012数量级的参数

    1. 解决算的慢的问题:减少权值连接,每一个节点只连接到上一层的少数神经元,即局部连接网络。
      在这里插入图片描述
    2. 解决难以收敛的问题:权值过多容易产生过拟合问题,如何消除?
      联想到人类解决问题的思路->信息分层处理,每一层在上一层提取特征的基础上进行再处理,抽象出更高级别的特征。
      在这里插入图片描述
  • 深度学习相比全连接网络的优势主要体现在以下几个方面:

    1. 更好的特征表示学习: 深度学习模型通过多层次的非线性变换,可以自动地从数据中学习到更高级、更抽象的特征表示。相比之下,全连接网络仅仅通过简单的线性变换,其特征表示能力相对较弱。
    2. 参数共享和稀疏性: 深度学习模型中的卷积神经网络 (CNN) 和循环神经网络 (RNN) 等结构具有参数共享的特性,这使得模型的参数量大大减少,同时提高了模型的泛化能力和训练效率。相比之下,全连接网络中的参数量随着网络层数的增加呈指数级增长,容易出现过拟合问题。
    3. 处理高维数据的能力: 深度学习模型特别适合处理高维数据,如图像、文本、语音等。卷积神经网络 (CNN) 可以有效地捕捉图像中的空间局部性特征,而循环神经网络 (RNN) 则适用于处理序列数据。
    4. 适应性和泛化能力: 深度学习模型的多层次结构使其能够学习到复杂的数据模式和特征,从而提高了模型的泛化能力,使其在未见过的数据上表现更好。相比之下,全连接网络由于单一的层次结构限制,很难学习到高级别的抽象特征,因此泛化能力可能较弱。
    • 总之,深度学习相比全连接网络具有更强大的特征表示学习能力、更高的泛化能力、更好的处理高维数据的能力等优势,使其成为了当前各种复杂任务的首选模型。

深度学习平台简介

在这里插入图片描述
在这里插入图片描述

PyTorch简介

是什么?

  • PyTorch是一个 Python 的深度学习库 。它最初由Facebook人工智能研究小组开发而优步的Pyro软件则用于概率编程。
  • 最初PyTorch由Hugh Perkins开发作为基于Torch框架的LusJIT的Python 包装器。PyTorch在Python中重新设计和实现Torch同时为后端代码共享相同的核心C库。
  • 除了Facebook之外Twitter、GMU和Salesforce等机构都采用了PyTorch。
  • 到目前据统计已有80%的研究采用PyTorch包括Google。
    • PyTorch和TensorFlow2的对比
      在这里插入图片描述

学习资源

基本概念

  • 张量(Tensor)
    是一个物理量,对高维(维数 ≥ 2)的物理量进行“量纲分析”的一种工具。
    简单的可以理解为:一维数组称为矢量,二维数组为二阶张量,三维数组称为三阶张量…
  • 计算图
    用 “ 结点 ”(nodes)和 “ 线 ”(edges)的有向图来描述数学计算的图像。“ 节点 ” 一般用来表示施加的数学操作,但也可以表示数据输入的起点/输出的终点,或者是读取/写入持久变量的终点。“ 线 ” 表示 “ 节点 ” 之间的输入/输出关系。这些数据 “ 线 ” 可以输运 “ size可动态调整 ” 的多维数据数组,即 “ 张量 ”(tensor)
    Alt
  • 注意
    • 使用 tensor 表示数据
    • 使用Dataset、DataLoader读取样本数据和标签
    • 使用变量(Variable)存储神经网络权值等参数
    • 使用计算图(Computational Graph)来表示计算任务
    • 在代码运行过程中同时执行计算图
  • 简单示例
    构建简单的计算图,每个节点将零个或多个tensor作为输入,产生一个tensor作为输出。PyTorch中,所见即为所得,tensor的使用和numpy中的多维数组类似:
import torch

x_const = torch.tensor([1.0, 2.0, 3.0])
y = torch.tensor([3.0, 4.0, 5.0])
output = x_const + y
print(x_const, '\n', y, '\n', output)

输出:
运行结果
相应计算图:
计算图

二、卷积神经网络基础

1.进化史

在这里插入图片描述

2.基本概念

特征提取

  • 卷积
    卷积在深度学习中扮演着非常重要的角色,卷积操作是一种有效提取局部特征的方法,它在图像处理、自然语言处理等领域都有广泛的应用。在深度学习中,卷积操作通常用于构建卷积神经网络(Convolutional Neural Networks,CNNs)。CNNs通过在输入数据上滑动一个或多个卷积核(也称为过滤器或滤波器),在每个位置上执行卷积操作来提取特征。卷积核是一种小的、可学习的权重矩阵,它可以有效地捕捉输入数据中的局部模式。
    在这里插入图片描述
    注:图像卷积时,根据定义,需要首先把卷积核上下左右转置(该操作可以增加模型的灵活性,提高特征提取的效果,并帮助模型更好地适应不同方向上的特征)。此处卷积核(黄色)是对称的,所以忽视。
  • 填充(Padding)
    在矩阵的边界上填充一些值,以增加矩阵的大小,通常用0或者复制边界像素来进行填充。
    在这里插入图片描述
  • 步长(Stride)
    指卷积核在输入数据上滑动的距离。具体来说,步长定义了在每个方向上卷积核移动的间隔大小。在深度学习中,步长通常是一个超参数,需要在建立卷积神经网络(CNN)时进行指定,可以是任意正整数。如图步长为2:
    在这里插入图片描述
  • 多通道卷积
    彩色图像一般包括RGB三个通道(channel),输入数据的维度有三个(长,宽,通道数),而滤波器(filter)的通道数需要保证和输入的通道数一致,此时的卷积过程就是多通道的。
    在这里插入图片描述
    图片转载自:https://blog.csdn.net/wzx479/article/details/102757275

下采样/池化 Pooling

思想:使用局部统计特征,如均值或最大值,解决特征过多的问题,缩小了网络的规模。
在这里插入图片描述

基本结构

构成部分:多个卷积层 + 下采样层(池化)+ 全连接层(根据需求添加)
在这里插入图片描述

3.学习算法

前向传播

在这里插入图片描述
在这里插入图片描述

误差反向传播

  • 经典BP算法
    在这里插入图片描述
    在这里插入图片描述
  • 卷积NN的BP算法
    • 卷积层 + 卷积层
      在这里插入图片描述
    • 卷积层 + 全连接层
      在这里插入图片描述

三、LeNet-5网络

1.网络介绍

Gradient-based learning applied to document recognition

在这里插入图片描述

2.网络结构详解

在这里插入图片描述

C1层(卷积层)

  • 由6个Feature Map构成
  • 每个神经元对输入进行5*5卷积
  • 每个神经元对应5×5+1个参数,共6个Feature Map,28×28个神经元,共有(5 × 5 + 1) × 6 × (28 × 28) = 122304个连接

S2层(Pooling层)

在这里插入图片描述

C3层(卷积层)

在这里插入图片描述

S4层

与S2层工作原理相同

C5层

  • 120个神经元
  • 每个神经元同样对输入进行5×5卷积,与S4全连接
  • 总连接数(5 × 5 × 16 + 1) × 120 = 48120

F6层

  • 84个神经元
  • 与C5全连接
  • 总连接数(120 + 1) × 84 = 10164

输出层

  • 由欧式径向基函数单元构成
  • 每类一个单元
  • 输出RBF单元计算输入向量和参数向量之间的欧式距离

网络结构图

规律:随着网络深入,宽、高衰减,通道数增加
在这里插入图片描述

网络说明

与现在网络的区别

  • 卷积时不进行填充(Padding)
  • 池化层选用平均池化,而非最大池化
  • 选用Sigmoid或tanh,而非ReLU作为非线性环节激活函数
  • 层数较浅,参数数量小(约为6万)

3.网络结构可视化

3D Visualization of a Convolutional Nerual Network

4.LeNet5代码实现

import torch
from torch import nn
from d2l import torch as d2l

class Reshape(torch.nn.Module):
	def forward(self, x):
		return x.view(-1, 1, 28, 28)
		
net = torch.nn.Sequential(
	Reshape(),
	nn.Conv2d(1, 6, kernel_size=5, padding=2 ), nn.Sigmoid(),
	nn.AvgPool2d(kernel_size=2 , stride=2),
	nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
	nn.AvgPool2d(kernel_size=2, stride=2),
	nn.Flatten(),
	nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
	nn.Linear(120, 84), nn.Sigmoid(),
	nn.Linear(84 , 10))

说明:

  • nn.Sequential()
    该函数可以将不同的模块组合成一个新的模块,将各模块按顺序输入即可。
  • nn.AvgPool2d(kernel_size, stride)或MaxPool2d
    表示平均池化或最大池化层,输入参数分别为池化窗口大小和步长。两个参数可以同时为整数,否则为元组。
  • nn.Sigmoid()
    该函数为上一层的输出添加sigmoid激活函数,类似的还有nn.ReLU(),nn.Tanh()等。
  • nn. Conv2d(in _channels, out_channels, kernel_size)
    卷积层,其三个参数按顺序代表输入通道数、输出通道数、卷积核大小。若卷积核形状为正方形,则卷积核大小可以为int,否则卷积核大小必须为元组(tuple)。如:nn.Conv2d(1, 6, (5,4))即代表卷积核大小为5×4。
  • stride参数:可以规定卷积的步长,与卷积核大小类似,若各方向步长相同则可以为整数,否则应为元组。
  • padding参数:在图像的周围补充0的个数,常常用于控制卷积前后图像的尺寸大小。

四、基本卷积神经网络

1.AlexNet

网络提出

Imagenet classification with deep convolutional neural networks
在这里插入图片描述

网络结构

在这里插入图片描述

网络说明

  • 网络一共有8层可学习层——5层卷积和3层全连接
  • 改进(相比于LeNet)
    • 池化层均采用最大池化
    • 选用ReLU作为非线性环节激活函数
    • 网络规模扩大,参数数量接近6000万
    • 出现 “多个卷积层 + 单个池化层” 的结构
  • 普遍规律
    随着网络深入,宽、高衰减,通道数增加
    在这里插入图片描述
    注:左侧数字表示连接数,右侧表示参数

改进

  • 输入样本
    • 从原始图像(256, 256)中,随机的crop出一些图像(224, 224)。
    • 水平翻转图像。
    • 给图像增加一些随机的光照。
      crop:平移变换;flip:反射变换;color jittering:光照、彩色变换
      在这里插入图片描述
  • 激活函数
    采用ReLU替代Tanh、Sigmoid,用于卷积层与全连接层之后
    在这里插入图片描述
  • Dropout暂退
    在每个全连接层后面使用一个Dropout层,以概率 p 随机关闭激活函数
    在这里插入图片描述
  • 双GPU策略
    AlexNet使用两块GTX580显卡进行训练,两块显卡只需要在特定的层进行通信
    在这里插入图片描述

详细解释

以第一层conv1为例
在这里插入图片描述

  • relu1:max(0, x),作为激活函数紧接在卷积层后
  • norm1:局部响应归一化LRN
    作用不大,在CNN中不常用
  • pool1:采用max pooling
    pooling核大小为3×3,stride为2,代表2倍的降采样。此处的pool1层是有交叠的池化层,即pooling核在相邻位置有重叠
    在这里插入图片描述

可视化

  • 第一层卷积核可视化
    在ILSVRC-2010上,top-1错误率为37.5%,top-5错误率为17.0%,下图是对96个11113的卷积核进行可视化
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

2.VGG-16

Very deep convolutional networks for large-scale image recognition
在这里插入图片描述

  • 12
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值