剪绳子(实数范围的二分)
有N根绳子,第i根绳子长度为Li,现在需要M根等长的绳子,你可以对N根绳子进行任意裁剪(不能拼接),请你帮忙计算出这M根绳子最长的长度是多少。
输入格式
第一行包含2个正整数N、M,表示原始绳子的数量和需求绳子的数量。
第二行包含N个整数,其中第 i 个整数Li表示第 i 根绳子的长度。
输出格式
输出一个数字,表示裁剪后最长的长度,保留两位小数。
数据范围
1≤N,M≤100000,
0<Li<109
输入样例:
3 4
3 5 4
输出样例:
2.50
样例解释
第一根和第三根分别裁剪出一根2.50长度的绳子,第二根剪成2根2.50长度的绳子,刚好4根。
题解
算法标签:二分法(实数范围)
#include <iostream>
#include <algorithm>
using namespace std;
int a[1000005];
double l = 0 , r = 1e9 ;
double mid;
int i;
int n ,m;//n为根数,m为要多少根
bool check(double mid){
int cnt = 0;
for (int j = 0 ; j < i ; j++){
if (a[j] > mid) cnt += (int)(a[j] / mid);
}
if (cnt >= m) return true;
else return false;
}
int main(){
cin >> n >> m;
for (i = 0 ; i < n ; i++){
scanf("%d", &a[i]);
}
while (l + 1e-4 < r ){
mid = (l + r) / 2.0;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.2lf", mid);
return 0;
}
思路:
目的是在一个给定的范围中查找到一个最佳的方案。
其实本质也是在枚举,如果当前当都可以满足,则去试试更长的绳子可不可以,有点得寸进尺的味道了噢!!
如果按照正常的想法,自己可能会从最短开始找,比如最短的一条绳子作为基础,然后不停增加长度,看看能不能实现,如果能实现,就往长的找(因为要找最长的嘛)但是,怎么实现“增加长度”呢?这里的长度可是浮点数级别的啊!!
于是,就有了对分的做法!!!!