寒假每日一题题解(1.14)剪绳子(实数范围的二分)

剪绳子(实数范围的二分)

有N根绳子,第i根绳子长度为Li,现在需要M根等长的绳子,你可以对N根绳子进行任意裁剪(不能拼接),请你帮忙计算出这M根绳子最长的长度是多少。

输入格式

第一行包含2个正整数N、M,表示原始绳子的数量和需求绳子的数量。

第二行包含N个整数,其中第 i 个整数Li表示第 i 根绳子的长度。

输出格式

输出一个数字,表示裁剪后最长的长度,保留两位小数。

数据范围

1≤N,M≤100000,
0<Li<109

输入样例:
3 4
3 5 4
输出样例:
2.50
样例解释

第一根和第三根分别裁剪出一根2.50长度的绳子,第二根剪成2根2.50长度的绳子,刚好4根。

题解

算法标签:二分法(实数范围)

#include <iostream>
#include <algorithm>
using namespace std;
int a[1000005];
double l = 0 , r = 1e9 ;
double mid;
int i;
int n ,m;//n为根数,m为要多少根

bool check(double mid){
    int cnt = 0;
    for (int j = 0 ; j < i ; j++){
        if (a[j] > mid) cnt += (int)(a[j] / mid);
    }
    if (cnt >= m) return true;
    else return false;
}

int main(){
    cin >> n >> m;
    for (i = 0 ; i < n ; i++){
        scanf("%d", &a[i]);
    }
    while (l + 1e-4 < r ){
        mid = (l + r) / 2.0;
        if(check(mid)) l = mid;
        else r = mid;
    }
    printf("%.2lf", mid);
    
    return 0;
}

思路:

目的是在一个给定的范围中查找到一个最佳的方案。

其实本质也是在枚举,如果当前当都可以满足,则去试试更长的绳子可不可以,有点得寸进尺的味道了噢!!

如果按照正常的想法,自己可能会从最短开始找,比如最短的一条绳子作为基础,然后不停增加长度,看看能不能实现,如果能实现,就往长的找(因为要找最长的嘛)但是,怎么实现“增加长度”呢?这里的长度可是浮点数级别的啊!!

于是,就有了对分的做法!!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值