自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 机器学习----聚类Kmeans算法 从零到一:全面掌握(小白,附代码)

本文全面介绍了K-means聚类算法,包括其基本概念、核心思想、算法流程以及聚类评估方法。K-means是一种无监督学习算法,通过计算样本之间的相似性,将数据划分为若干组(簇),以发现数据的内在结构和模式。文章详细讲解了如何确定聚类数K,包括“肘方法”、轮廓系数和CH指数等评估指标。通过泰坦尼克号客户数据聚类分析的案例,展示了从数据预处理到模型训练、评估和结果可视化的完整过程。通过这些内容,读者可以全面掌握K-means算法的原理和实践应用。

2025-06-07 08:41:41 960

原创 机器学习----集成学习:Bagging、Boosting的原理与应用(小白,附代码)

本文系统地介绍了集成学习的核心思想、分类及应用场景,并深入讲解了随机森林、Adaboost、GBDT和XGBoost等主流算法的原理、构建过程及代码实现。文章还对比了Bagging和Boosting的异同,提供了详细的代码示例和超参数调优方法,旨在帮助读者全面掌握集成学习技术,解决实际问题。最后,特别深入解析了XGBoost算法的安装、使用及调优技巧,并通过实际案例演示了其高效性和准确性。

2025-06-06 20:44:08 1067

原创 机器学习----决策树:一文读懂决策树、构建高效模型(小白进,附代码)

本文全面介绍了决策树的基本概念、构建步骤及其三种主要类型:ID3、C4.5和CART。ID3使用信息熵和信息增益进行特征选择,但容易过拟合;C4.5通过信息增益率解决了这一问题;CART则使用基尼指数或均方误差,支持分类和回归任务。文章还详细讲解了决策树剪枝技术,包括预剪枝和后剪枝的方法及其优缺点。最后,通过泰坦尼克号生存预测案例,展示了决策树在实际问题中的应用,包括数据预处理、模型训练、评估和可视化。通过这些内容,读者可以全面掌握决策树算法的原理和实践。

2025-06-04 16:49:53 1032

原创 机器学习----逻辑回归:从数学原理到实战评估(小白,附代码)

本文全面介绍了逻辑回归的基础知识、核心原理及其在分类问题中的应用。逻辑回归通过Sigmoid函数将线性回归的输出映射到(0,1)区间,实现二分类预测。文章深入剖析了Sigmoid函数的作用、决策边界的设定、极大似然估计方法以及交叉熵损失函数的优化过程。通过Scikit-learn实战,展示了从数据预处理到模型评估的完整流程,并通过电信客户流失预测案例,详细说明了如何处理实际数据、训练模型和评估性能。文章还介绍了混淆矩阵、精确率、召回率、F1分数和AUC值等分类评估指标,为读者提供了实用的参考。

2025-06-04 10:38:07 1036

原创 机器学习----线性回归 代码实战细细细 (下)

本文主要介绍了线性回归模型的评估指标及其实现方法,包括平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)以及模型的拟合、欠拟合与过拟合问题。通过详细的概念、公式、优缺点分析和适用场景,读者可以全面了解如何评估线性回归模型的性能。文章还提供了线性回归模型的实现步骤和代码示例,从数据加载、预处理、模型训练到预测和评估,帮助读者掌握实际操作。此外,深入探讨了欠拟合和过拟合的产生原因及解决办法,并通过代码演示展示了如何应对这些问题。最后介绍了 L1 和 L2 正则化方法及其适用场景,帮助读者在实际应

2025-05-28 14:36:02 602

原创 机器学习----线性回归 细且易懂哦(上)

线性回归是用于建模自变量与因变量关系的回归分析方法,可分为一元和多元回归。通过最小二乘法等损失函数衡量预测误差,采用梯度下降或正规方程求解模型参数。梯度下降包括全梯度、随机梯度和小批量梯度三种优化方式,各有优缺点。线性回归在Scikit-learn中通过LinearRegression类实现,包含模型训练、预测和参数获取等功能。该算法适用于预测分析,核心是通过拟合直线或超平面来描述变量间的线性关系。

2025-05-26 21:26:30 773

原创 机器学习----KNN(K近邻算法:K Nearest Neighbor)详解

KNN算法是一种基于"物以类聚"思想的机器学习方法,通过计算样本间距离实现分类和回归任务。文章系统介绍了KNN的原理、实现流程和应用示例。算法核心是选择K个最近邻样本,通过多数表决(分类)或平均值(回归)进行预测。详细讲解了四种距离度量方式(欧式、曼哈顿等)和关键参数K值的选取,并提供了特征预处理(归一化/标准化)的具体代码实现。最后以鸢尾花数据集为例,展示了完整的KNN分类实现流程,包括数据划分、特征工程、模型训练与网格搜索调参等步骤,通过准确率评估模型性能。

2025-05-24 23:43:32 760 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除