给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
struct Node { int val; Node *left; Node *right; Node *next; }
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL
。
初始状态下,所有 next 指针都被设置为 NULL
。
示例 1:
输入:root = [1,2,3,4,5,6,7] 输出:[1,#,2,3,#,4,5,6,7,#] 解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化的输出按层序遍历排列,同一层节点由 next 指针连接,'#' 标志着每一层的结束。
示例 2:
输入:root = [] 输出:[]
提示:
- 树中节点的数量在
[0, 212 - 1]
范围内 -1000 <= node.val <= 1000
进阶:
- 你只能使用常量级额外空间。
- 使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。
思路:通过层级标识,使用深度优先可以保证每一层节点的有序性,由于层数都是整数,可以使用数组或者map等,使用数组可能效果会更好,但是需要先获取树的最大深度,增加了复杂度,本案例使用的是hashmap。每遍历一个节点,就在map里get(level),存储的节点就是该层的上一个节点,若有就让上一个节点连上该节点。然后就直接套经典的DFS的模版即可。
代码的时间复杂度是O(n),由于是完美二叉树,所以它的空间复杂度是O(log2 n),仅次于O(1)
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
Map<Integer, Node> map = new HashMap<>();
public Node connect(Node root) {
// 使用深度优先遍历,然后用level层数标识
travel(root, 0);
return root;
}
public void travel(Node root, int level) {
// 终止条件
if (root == null) return;
// 先把map里相同层数的Node取一下,也就是上一个同一层的节点
// 如果为null,说明这是第一个,不需要前一个节点的连接
Node before = map.get(level);
if (before != null) {
before.next = root;
}
map.put(level, root);
// 无论咋样,先把root的下一个节点设成null,因为你不知道root到底是不是该层最后一个节点
// 可以不写,因为默认就是null,这里是响应题目要求
root.next = null;
travel(root.left, level+1);
travel(root.right, level+1);
}
}
还可以不使用Map额外空间,直接让root的left连root的right,right连root的兄弟子树(也就是next)的left。递归顺序是从上到下,从左往右,完全符合题目指针,数据的流向。时间复杂度都是O(n),空间复杂度会低一点是O(1)。上代码:
class Solution {
public Node connect(Node root) {
if(root==null){
return root;
}
if(root.left!=null){
root.left.next=root.right;
root.right.next=root.next!=null?root.next.left:null;
connect(root.left);
connect(root.right);
}
return root;
}
}