顺序表刷题!!!
空间复杂度不写默认O(1),满不满足题目需要你自己去看!!!
解法一:快速排序+查找下标不匹配得数字---时间复杂度O(n*logn+n)
解法二:建立映射表,初始化为-1,将原数组得元素分别映射到下标数字对应的位置,最终-1所在得下标对应的数字就是消失的数字---时间复杂度O(n+n(原数组和新数组均遍历一次)),空间复杂度O(n)
解法三:异或
//异或结论:两个相同的异或为0,0与某数异或为某数
//有一个特性就是,异或同一个数字两次则这个数为0
//如果异或了这个数字一次那么保留这个数字
给定val,初始化为0,与原数组异或一次,与0-n得数字异或一次,必然有一个数字被异或了一次
时间复杂度O(n+n)
解法四:等差数列求和,已知0-n,等差数列求和,减去原数组,剩下某个元素,就是消失的数字
时间复杂度O(N)
解法一:挨个挨个删除,挨个挨个往前挪动,大众思路---时间复杂度O(n方)
解法二:创建新数组,映射过去,---时间复杂度O(n),空间复杂度O(n)
解法三:双指针,一个去找要删除的数据,一个在存储数据,同时要--数组长度,时间复杂度O(n)
解法1:建立映射表,根据k的值,从n-k左右的位置,放到映射表的前面,其他的放到映射表的后面,时间复杂度O(n),空间复杂度O(n)
解法2:将最后一个元素放到最前面,最前面一个一个往后移动,移动k次就是n*k,时间复杂度o(n*k)
解法3:
升序数组。
解法1:建表,一个指针指向原数组,一个指针指向新数组,原数组数字==新数组数字,原数组搜寻。时间复杂度O(n),空间复杂度O(n)
解法2:双指针,一个指针寻找不同的数字,更换不同的数字,一个指针存储数字,直接往前面覆盖(类似移除元素那道题)
解法3:给定cur和next两个指针,这两个指针的作用是找一段相等的区间,再给定一个指针dst,用来存放重复的数字,当cur和next的值不相等时,表明找到了不重复的数字,把某一个值给dst存下来。时间复杂度O(n)
解法一:短的合并到长的上面,进行排序。时间复杂度O(n+n*logn)
解法二:归并排序:新建数组,给定m和n两个数组两个指针,比较两个指针大小,依次放到新数组位置。时间复杂度O(M+N),空间复杂度O(m+n)
解法三(优化解法二):既然是非递减数组,是有序的,解法二是从小的开始走,那如果从大的开始走呢?倒着走呢?
时间复杂度O(m+n)