域适应目标检测:Coarse-to-Fine论文笔记——Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation

本文介绍了《Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation》论文,提出了一种粗到细的特征适应框架解决域适应目标检测问题。通过注意力机制的区域转换模块(ART)聚焦前景信息,结合基于原型的语义对齐模块(PSA)进行细粒度适应,改善了跨域目标检测的性能。实验结果表明,该方法在减少领域差异和提高检测准确性方面表现出优势。
摘要由CSDN通过智能技术生成

域适应目标检测:Coarse-to-Fine论文笔记——Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation

综述

论文题目:《Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation》

会议与时间:IEEE Conference on Computer Vision and Pattern Recognition 2020 (CVPR, 2020)

论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Zheng_Cross-domain_Object_Detection_through_Coarse-to-Fine_Feature_Adaptation_CVPR_2020_paper.pdf

针对领域:域适应目标检测

在网上没有找到公开的源码,但是找到了别人写的源码笔记(代码是向论文作者要的),可以参考下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉萌新、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值