PyTorch学习笔记:cuda方法——查看显卡信息

PyTorch学习笔记:cuda方法——查看显卡信息

cuda常用方法

  • 查看cuda是否可用
torch.cuda.is_available()
  • 查看当前设备cuda数量
torch.cuda.device_count()
  • 查看当前设备第i个cuda名称
torch.cuda.get_device_name(i)
  • 设置默认使用第i块GPU
# 里面输入int类型的数字
torch.cuda.set_device(i)
  • 返回当前默认的GPU设备索引
torch.cuda.current_device()

补充:

  • 查看系统CPU数量
torch.cuda.os.cpu_count()

get_device_properties函数

  用于获取指定GPU设备的各种属性信息,包括:

  • name:GPU 设备的名称;
  • total_memory:提取GPU总显存大小,以字节为单位;
  • major:CUDA计算能力的主要版本号;
  • minor:CUDA计算能力的次要版本号;
  • multi_processor_count:GPU设备的多处理器数量;
  • is_integrated:GPU是否是集成显卡,如果返回True(或者1),则说明该显卡是集成显卡,否则是独立显卡;
  • is_multi_gpu_board:表示GPU是否是多GPU板卡,如果返回True(或者1),则说明该显卡是一个具有多GPU芯片的显卡;

代码案例

import torch

device_id = 0  # GPU 设备的 ID
properties = torch.cuda.get_device_properties(device_id)

print("Name: ", properties.name)
print("Total memory: ", properties.total_memory / (1024**2), "MB")  # 转换为 MB 单位
print("CUDA capability: ", properties.major, ".", properties.minor)
print("Multiprocessor count: ", properties.multi_processor_count)

输出(以本机执行结果为例)

Name:  NVIDIA GeForce RTX 3050
Total memory:  8191.5 MB
CUDA capability:  8 . 6
Multiprocessor count:  20
Intel集成了图形处理单元(IGP),也就是我们常说的“核显”,在深度学习任务中虽然性能上不如独立GPU,但在一些场景下仍然可以起到加速的作用。以下是基于Intel核显环境安装PyTorch的一个指南: ### 确认系统环境 首先需要确认你的操作系统、Python版本以及pip是否已经正确配置好,并且安装了必要的依赖库。 ### 安装Intel扩展包 为了更好地利用硬件资源,在使用Intel CPU及其集成显卡时推荐安装`intel-extension-for-pytorch`这个专门针对Intel架构优化过的版本。你可以通过下面这条命令从官方渠道获取最新稳定版: ```bash pip install intel_extension_for_pytorch -f https://software.intel.com/ipex-whl-stable ``` 请注意,上述链接指向的是稳定的发布分支;如果你想要尝试最新的特性,则可以选择预览版或者其他特定版本。 ### 设置DNNL Backend 确保设置了正确的后端用于加速计算,对于Intel平台来说就是oneAPI DPC++ Library (之前称为onednn)。这通常是在导入PyTorch之后立即设置的一项配置选项: ```python import torch torch.set_num_threads(8) # 使用CPU + MKLDNN作为默认推理引擎 torch._C._jit_set_profiling_executor(True) torch._C._debug_use_mkldnn(True) ``` 这里需要注意调整线程数以适应实际使用的机器情况。 ### 验证安装成功与否 最后一步非常重要——验证整个流程是否顺利完成。可以通过运行简单的测试程序来检查一切正常工作: ```python x = torch.ones((4,), device='cpu') print(x.device) if not x.is_cuda: print("正在使用非CUDA设备") else: print("注意:应该显示为'non-CUDA'") ``` 以上步骤涵盖了如何在一个配备有Intel处理器及内置图形芯片组的工作站或笔记本电脑上部署并启动PyTorch的基本操作。当然,随着技术的发展,具体的指令可能会有所变化,请参考[官方网站](https://www.intel.com/content/www/us/en/developer/tools/oneapi/pytorch.html)获得最权威的信息来源。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉萌新、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值