RAG系统环境搭建[Dify+xinference+vllm+rerank(bge-reranker-large)+embedding(bge-large-zh-v1.5 )+deepseek]

RAG系统环境搭建实战教程

目录

目录

Dify 服务器ECS-1

Rerank模型 | Embedding模型 | 服务器ECS-2 

服务器环境:

模型选用及启动模型工具 

cuda 安装

xinference安装使用

bge-reranker-large 部署

Deepseek模型 | 服务器ECS-3

服务器环境:

模型选用及启动模型工具 

环境版本选定

Duda | Driver 安装

Python 安装 及相关依赖安装

Vllm安装


  • 技术栈概要

模块

官网地址

描述

模型应用开发平台

dify

集成大模型,可以进行创建流程,智能体,聊天助手等功能的一个平台 页面

llm模型

deepseek-ai/DeepSeek-R1-Distill-Qwen-14B

源自Qwen-2.5 系列

Rerank模型

BAAI/bge-reranker-large

知识库检索模型-对检索结果重排序

text embedding模型

BAAI/bge-large-zh-v1.5

知识库构建时使用的文本向量化模型

vllm

vllm

vLLM 是一个快速且易于使用的库,专为大型语言模型 (LLM) 的推理和部署而设计。

xinference

xinference 大模型部署与分布式推理框架

  • 安装部署

Dify 服务器ECS-1

### 部署 `bge-reranker-large` 模型 #### 准备环境 为了成功部署 `bge-reranker-large` 模型,需先安装必要的依赖库。推荐使用虚拟环境来管理项目中的Python包。 ```bash python3 -m venv rerank_env source rerank_env/bin/activate # Linux or macOS rerank_env\Scripts\activate # Windows ``` 接着更新pip并安装transformers和其他必需的工具: ```bash pip install --upgrade pip pip install transformers torch sentence-transformers faiss-cpu ``` #### 加载模型 通过Hugging Face Transformers加载预训练好的 `bge-reranker-large` 模型实例化对象[^1]。 ```python from sentence_transformers import SentenceTransformer, util model_name = "BAAI/bge-reranker-large" model = SentenceTransformer(model_name) ``` #### 接口封装 创建一个简单的API接口用于接收查询请求并将返回的结果传递给客户端应用。这里可以采用Flask框架快速搭建RESTful服务端点[^2]。 ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/api/rerank', methods=['POST']) def rerank(): data = request.json queries = data.get('queries') docs = data.get('docs') if not queries or not docs: return jsonify({"error": "Missing input"}), 400 scores = model.rerank(queries=queries, documents=docs) response = {"scores": scores} return jsonify(response) if __name__ == '__main__': app.run(host='0.0.0.0', port=8080) ``` 上述代码片段展示了如何基于Flask构建基本的服务结构,并定义了一个处理重排序任务的HTTP POST方法。当接收到包含待评估问题列表和文档集合的有效JSON负载时,该函数会调用模型执行重排序操作并以JSON格式响应分数矩阵[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值