数学常数表 by q779

数学常数表
By q779
可能夹带私货 qwq

常数表

e = 2.718281828 e = \tt{2.718281828} e=2.718281828

π = 3.141592654 \pi = \tt{3.141592654} π=3.141592654

ln ⁡ π = 1.1447 \ln \pi = \tt{1.1447} lnπ=1.1447

π = 1.7725 \sqrt{\pi} = \tt{1.7725} π =1.7725

自然对数表 N N N ln ⁡ N \ln N lnN
ln ⁡ 2 = 0.69 \ln2 = \tt{0.69} ln2=0.69 2 \tt{2} 2 0.6931 \tt{0.6931} 0.6931
ln ⁡ 3 = 1.10 \ln3 = \tt{1.10} ln3=1.10 3 \tt{3} 3 1.0986 \tt{1.0986} 1.0986
ln ⁡ 5 = 1.61 \ln5 = \tt{1.61} ln5=1.61 5 \tt{5} 5 1.6094 \tt{1.6094} 1.6094
ln ⁡ 7 = 1.95 \ln7 = \tt{1.95} ln7=1.95 7 \tt{7} 7 1.9459 \tt{1.9459} 1.9459
ln ⁡ 11 = 2.40 \ln11 = \tt{2.40} ln11=2.40 11 \tt{11} 11 2.3979 \tt{2.3979} 2.3979
ln ⁡ 13 = 2.56 \ln13 = \tt{2.56} ln13=2.56 13 \tt{13} 13 2.5649 \tt{2.5649} 2.5649
ln ⁡ 17 = 2.83 \ln17 = \tt{2.83} ln17=2.83 17 \tt{17} 17 2.8332 \tt{2.8332} 2.8332
ln ⁡ 19 = 2.94 \ln19 = \tt{2.94} ln19=2.94 19 \tt{19} 19 2.9444 \tt{2.9444} 2.9444
ln ⁡ 23 = 3.14 \ln23 = \tt{3.14} ln23=3.14 23 \tt{23} 23 3.1355 \tt{3.1355} 3.1355
ln ⁡ 29 = 3.37 \ln29 = \tt{3.37} ln29=3.37 29 \tt{29} 29 3.3673 \tt{3.3673} 3.3673
ln ⁡ 31 = 3.43 \ln31 = \tt{3.43} ln31=3.43 31 \tt{31} 31 3.4340 \tt{3.4340} 3.4340
exp ⁡ \exp exp N N N exp ⁡ N \exp N expN
exp ⁡ 2 = 7.39 \exp{2} = \tt{7.39} exp2=7.39 2 \tt{2} 2 7.3891 \tt{7.3891} 7.3891
exp ⁡ 3 = 20.09 \exp{3} = \tt{20.09} exp3=20.09 3 \tt{3} 3 20.0855 \tt{20.0855} 20.0855
exp ⁡ 5 = 148.41 \exp{5} = \tt{148.41} exp5=148.41 5 \tt{5} 5 148.4132 \tt{148.4132} 148.4132
exp ⁡ 7 = 1096.63 \exp{7} = \tt{1096.63} exp7=1096.63 7 \tt{7} 7 \tt{} 1096.6332 \tt{1096.6332} 1096.6332
exp ⁡ 11 = 59874.14 \exp{11} = \tt{59874.14} exp11=59874.14 11 \tt{11} 11 59874.1417 \tt{59874.1417} 59874.1417
exp ⁡ 13 = 442413.39 \exp{13} = \tt{442413.39} exp13=442413.39 13 \tt{13} 13 442413.3920 \tt{442413.3920} 442413.3920

黑板粗体

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ

一些乱七八糟公式

等差数列前缀和: S ( n ) = n ( a 1 + a n ) 2 = n a 1 + n ( n − 1 ) 2 d S(n) = \dfrac{n(a_1+a_n)}{2} = na_1 + \dfrac{n(n-1)}{2}d S(n)=2n(a1+an)=na1+2n(n1)d

等比数列前缀和: S ( n ) = a 1 ( 1 − q n ) 1 − q , q ≠ 1 S(n) = \dfrac{a_1(1-q^n)}{1-q},q\ne 1 S(n)=1qa1(1qn),q=1

一些常见的前缀和

  • ∑ i = 1 n i = n ( n + 1 ) 2 \sum\limits_{i=1}^{n}i = \dfrac{n(n+1)}{2} i=1ni=2n(n+1)

  • ∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{i=1}^{n}i^2 = \dfrac{n(n+1)(2n+1)}{6} i=1ni2=6n(n+1)(2n+1)

  • ∑ i = 1 n i 3 = ( n ( n + 1 ) 2 ) 2 \sum\limits_{i=1}^{n}i^3 = \left(\dfrac{n(n+1)}{2}\right)^2 i=1ni3=(2n(n+1))2

快速开平方
x = a + x − a 2 x + a x ≈ a + x − a 2 2 × a \begin{aligned} \sqrt{x}&= a+\dfrac{x-a^2}{\sqrt{x}+a} \\\sqrt{x}&\approx a+\dfrac{x-a^2}{2\times a} \end{aligned} x x =a+x +axa2a+2×axa2

正整数 a a a 满足 a 2 ≤ x < ( a + 1 ) 2 a^2\le x < (a+1)^2 a2x<(a+1)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值