可能夹带私货 qwq
常数表
e = 2.718281828 e = \tt{2.718281828} e=2.718281828
π = 3.141592654 \pi = \tt{3.141592654} π=3.141592654
ln π = 1.1447 \ln \pi = \tt{1.1447} lnπ=1.1447
π = 1.7725 \sqrt{\pi} = \tt{1.7725} π=1.7725
自然对数表 | N N N | ln N \ln N lnN |
---|---|---|
ln 2 = 0.69 \ln2 = \tt{0.69} ln2=0.69 | 2 \tt{2} 2 | 0.6931 \tt{0.6931} 0.6931 |
ln 3 = 1.10 \ln3 = \tt{1.10} ln3=1.10 | 3 \tt{3} 3 | 1.0986 \tt{1.0986} 1.0986 |
ln 5 = 1.61 \ln5 = \tt{1.61} ln5=1.61 | 5 \tt{5} 5 | 1.6094 \tt{1.6094} 1.6094 |
ln 7 = 1.95 \ln7 = \tt{1.95} ln7=1.95 | 7 \tt{7} 7 | 1.9459 \tt{1.9459} 1.9459 |
ln 11 = 2.40 \ln11 = \tt{2.40} ln11=2.40 | 11 \tt{11} 11 | 2.3979 \tt{2.3979} 2.3979 |
ln 13 = 2.56 \ln13 = \tt{2.56} ln13=2.56 | 13 \tt{13} 13 | 2.5649 \tt{2.5649} 2.5649 |
ln 17 = 2.83 \ln17 = \tt{2.83} ln17=2.83 | 17 \tt{17} 17 | 2.8332 \tt{2.8332} 2.8332 |
ln 19 = 2.94 \ln19 = \tt{2.94} ln19=2.94 | 19 \tt{19} 19 | 2.9444 \tt{2.9444} 2.9444 |
ln 23 = 3.14 \ln23 = \tt{3.14} ln23=3.14 | 23 \tt{23} 23 | 3.1355 \tt{3.1355} 3.1355 |
ln 29 = 3.37 \ln29 = \tt{3.37} ln29=3.37 | 29 \tt{29} 29 | 3.3673 \tt{3.3673} 3.3673 |
ln 31 = 3.43 \ln31 = \tt{3.43} ln31=3.43 | 31 \tt{31} 31 | 3.4340 \tt{3.4340} 3.4340 |
exp \exp exp 表 | N N N | exp N \exp N expN |
---|---|---|
exp 2 = 7.39 \exp{2} = \tt{7.39} exp2=7.39 | 2 \tt{2} 2 | 7.3891 \tt{7.3891} 7.3891 |
exp 3 = 20.09 \exp{3} = \tt{20.09} exp3=20.09 | 3 \tt{3} 3 | 20.0855 \tt{20.0855} 20.0855 |
exp 5 = 148.41 \exp{5} = \tt{148.41} exp5=148.41 | 5 \tt{5} 5 | 148.4132 \tt{148.4132} 148.4132 |
exp 7 = 1096.63 \exp{7} = \tt{1096.63} exp7=1096.63 | 7 \tt{7} 7 | \tt{} 1096.6332 \tt{1096.6332} 1096.6332 |
exp 11 = 59874.14 \exp{11} = \tt{59874.14} exp11=59874.14 | 11 \tt{11} 11 | 59874.1417 \tt{59874.1417} 59874.1417 |
exp 13 = 442413.39 \exp{13} = \tt{442413.39} exp13=442413.39 | 13 \tt{13} 13 | 442413.3920 \tt{442413.3920} 442413.3920 |
黑板粗体
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
一些乱七八糟公式
等差数列前缀和: S ( n ) = n ( a 1 + a n ) 2 = n a 1 + n ( n − 1 ) 2 d S(n) = \dfrac{n(a_1+a_n)}{2} = na_1 + \dfrac{n(n-1)}{2}d S(n)=2n(a1+an)=na1+2n(n−1)d
等比数列前缀和: S ( n ) = a 1 ( 1 − q n ) 1 − q , q ≠ 1 S(n) = \dfrac{a_1(1-q^n)}{1-q},q\ne 1 S(n)=1−qa1(1−qn),q=1
一些常见的前缀和
-
∑ i = 1 n i = n ( n + 1 ) 2 \sum\limits_{i=1}^{n}i = \dfrac{n(n+1)}{2} i=1∑ni=2n(n+1)
-
∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{i=1}^{n}i^2 = \dfrac{n(n+1)(2n+1)}{6} i=1∑ni2=6n(n+1)(2n+1)
-
∑ i = 1 n i 3 = ( n ( n + 1 ) 2 ) 2 \sum\limits_{i=1}^{n}i^3 = \left(\dfrac{n(n+1)}{2}\right)^2 i=1∑ni3=(2n(n+1))2
快速开平方
x
=
a
+
x
−
a
2
x
+
a
x
≈
a
+
x
−
a
2
2
×
a
\begin{aligned} \sqrt{x}&= a+\dfrac{x-a^2}{\sqrt{x}+a} \\\sqrt{x}&\approx a+\dfrac{x-a^2}{2\times a} \end{aligned}
xx=a+x+ax−a2≈a+2×ax−a2
正整数 a a a 满足 a 2 ≤ x < ( a + 1 ) 2 a^2\le x < (a+1)^2 a2≤x<(a+1)2