太强大!IDEA丝滑连接deepseek——idea + deepseek + codegpt 看了就会保姆级教程!

目录

idea连接deepseek的效果

1、跨领域知识、语法/库的快速查询、错误修复、代码优化、代码解释

2、代码生成、代码补全应用

3、 代码解读

题外,插播一句——idea汉化操作

连接deepseek对idea的要求 

安装deepseek——亲测有效


代码生成、自动补全、跨领域知识(如数学公式转代码、数据可视化技巧)、快速原型设计(快速生成功能原型)、复杂问题拆解、语法/库的快速查询、错误修复、代码优化、代码解释....

【deepseek + idea 王炸组合】这么牛这么强大!!

先来看看连上的效果有多爽勾一下你们的兴趣~

idea连接deepseek的效果

1、跨领域知识、语法/库的快速查询、错误修复、代码优化、代码解释

无需手动查文档文献,直接提问(如“Pandas如何合并两个DataFrame?”)即可获得示例代码。

也可直接选中出错的代码,deepseek会自动进行错误修复

2、代码生成、代码补全应用

编写代码时,当你输入部分代码后,右键点击,选择 “New Chat”。DeepSeek 就会迅速分析代码上下文,智能补全后续代码!

这一功能大大节省了代码编写时间,让你的编程效率直线上升。

3、 代码解读

选中比较困难理解的复杂的代码,右键点击,选择 “Ask Queation”,DeepSeek 便会为你详细解读代码的功能和逻辑。

有了它的帮助,无需再四处查找资料,像是位随时在线的编程导师,为你排忧解难,代码维护和调试变得更加轻松。

题外,插播一句——idea汉化操作

虽然说我开始作为初学者时就有很多人说非常不建议idea用中文版,认为用英文版的不光便于提高英文水平能力,还能之后查英文文献或者什么的英文的东西比较方便?ヾ(◍°∇°◍)ノ゙

但是!!!

全是英文的bug什么的真的看不懂啊(`ε´),我觉得也没必要非为难自己。而且转为中文以后遇到相同的bug自己会更有印象知道怎么处理

idea汉化也很简单,去插件商城下个插件就ok了。

依次点击菜单 File -> Setting, 打开plugin插件市场,搜索关键字中文,即可看到这款官方提供的汉化插件了,点击安装。

连接deepseek对idea的要求 

首先你的idea必须是2024.1及以上的版本。因为这个版本之下的在plugin插件商场是搜不到的。可能版本之下的idea本身就不支持 ,无所谓不重要。

idea不同版本官网下载地址,点这里去下载

如果你是windows版本,如下选择下载:(我这里选的是2024.1的版本) 

安装deepseek——亲测有效

亲测有效,网上那些复杂的没必要,就按照我这个一步步来就ok。

1、插件商城搜索:CodeGPT (现在也可能叫 Proxy AI,都是一个东西,点击Install安装即可

2、登录DeepSeek官网,前往API开放平台deepseek官网点击这里

选中API keys,点击创建API key,输入名称(随便起名就ok),点击创建。

注意!!!复制生成的API key,这个自己要找地方记一下,因为之后就看不到了。

3、复制生成的API key,点击 File -> Settings -> Tools -> CodeGPT -> Custom OpenAI,修改API key,粘贴刚才复制的API key,点击OK

4、看下Headers和Body的配置和我相同,不同自己手动修改下

5、修改Code Completions的配置,将FIM template改为DeepSeek Coder,URL改为https://api.deepseek.com/beta/completions

看下Headers和Body的配置和我相同,不同自己手动修改下

6、点击OK,重启IDEA。idea右边出现这个图标就可以尽情享受deepseek的快乐辣!

完成辣~~~(๑¯ ³ ¯๑)又是棒棒的自己呢欧耶!吼吼吼吼

### 如何在 IntelliJ IDEA 中配置和使用 Deeps 深度学习框架 #### 配置 Java 开发环境 为了能够在 IntelliJ IDEA 中顺利运行深度学习项目,首先需要确保已经正确安装并配置好 JDK (Java Development Kit)[^1]。 #### 安装与配置 Deeps 库 由于具体提及的是 "Deeps" 而非常见的深度学习库名称(如 TensorFlow 或 PyTorch),假设这里指的是某个特定于 Java 的深度学习库或者是自定义命名的一个库。通常情况下,对于任何第三方库的引入: - 如果该库支持 Maven 构建,则可以在项目的 `pom.xml` 文件里添加相应的依赖项; - 对于不通过包管理器分发的情况,则需手动下载 JAR 文件并将它们加入到工程类路径下[^2]。 ```xml <!-- 假设这是 pom.xml 中的一部分 --> <dependencies> <!-- 这里应该填写具体的 Deeps 库坐标 --> </dependencies> ``` #### 创建新项目或打开现有项目 启动 IntelliJ IDEA 后可以选择创建一个新的 Maven/Gradle 项目或者导入现有的源码仓库。按照向导提示完成必要的设置过程,比如指定 SDK 版本等参数。 #### 编写代码实现模型训练等功能 一旦完成了上述准备工作之后便可以着手编写业务逻辑部分了。下面给出一段简单的伪代码用于展示如何加载数据集、构建神经网络结构以及执行训练循环操作: ```java // 导入所需的 Deeps 类库 import com.example.deeps.*; public class Main { public static void main(String[] args) throws Exception { // 加载 MNIST 数据集或其他适用的数据集合 Dataset dataset = new MnistLoader().load(); // 初始化一个多层感知机实例 MultiLayerPerceptron mlp = new MultiLayerPerceptron.Builder() .addLayer(784, Activation.RELU) .addLayer(300, Activation.RELU) .addLayer(10, Activation.SOFTMAX) .build(); // 设置优化算法及损失函数 Optimizer optimizer = new StochasticGradientDescent(); LossFunction lossFunc = CrossEntropyLoss.getInstance(); // 训练模型直到满足收敛条件为止 while (!mlp.isConverged()) { double error = mlp.train(dataset.getInputs(), dataset.getLabels(), optimizer, lossFunc); System.out.printf("Epoch %d: Error=%.6f\n", epoch++, error); } // 测试最终得到的结果准确性 EvaluationResult result = mlp.evaluate(testSet); System.out.println(result.toString()); } } ``` 请注意以上示例仅为示意性质的内容,并不代表实际可用的 API 接口形式;真实场景下的编码工作还需要参照官方文档来进行调整修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值