1、knn算法适合于解决分类问题
解决问题的步骤其实很简单:
1、先确定好输入(feature)、输出(lable)、k值(一般取数据总量的开平方)、预测点
2、求出feature中各个点距离预测点的距离,然后进行排序(从小到大)并且取出对应的lable(取k个)
3、最后对这个k个lable做相应的处理,可能是取这k个lable中出现次数最多的值,也可能是取这k个lable的平均值
2、增加准确性的方法
1、调参,调整k的取值,k太大会混进噪音数据,k太小准确性太低
2、对输入数据进行处理。
例如:数据标准化,适用于数据分布不均匀,取值范围不确定的情况
数据归一化,适用于取值范围确定,数据分布均匀的情况
3、增加输入的维度