机器学习:KNN算法

1、knn算法适合于解决分类问题

解决问题的步骤其实很简单:
1、先确定好输入(feature)、输出(lable)、k值(一般取数据总量的开平方)、预测点
2、求出feature中各个点距离预测点的距离,然后进行排序(从小到大)并且取出对应的lable(取k个)
3、最后对这个k个lable做相应的处理,可能是取这k个lable中出现次数最多的值,也可能是取这k个lable的平均值

2、增加准确性的方法

1、调参,调整k的取值,k太大会混进噪音数据,k太小准确性太低
2、对输入数据进行处理。
例如:数据标准化,适用于数据分布不均匀,取值范围不确定的情况在这里插入图片描述
数据归一化,适用于取值范围确定,数据分布均匀的情况
在这里插入图片描述
3、增加输入的维度

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值