线性代数——理解向(5)

麻省理工学院 - MIT - 线性代数(我愿称之为线性代数教程天花板)_哔哩哔哩_bilibili

 MIT—线性代数笔记00 - 知乎 (zhihu.com)

一、正定矩阵

给定一个2x2矩阵 A=\begin{bmatrix} a &b \\ c& d \end{bmatrix} ,有四个途径判定矩阵是否正定矩阵:

  1. 特征值: λ1>0,λ2>0;
  2. 行列式(所有子行列式): ,a> 0,ac-b^{2}>0;
  3. 主元:a> 0,\left ( ac-b^{2} \right )/a> 0 ,
  4. 表达式 x^{T}Ax>0 (x=0除外)。通常这就是正定的定义,而前三条是用来验证正定性的条件。

半正定矩阵 

 矩阵\begin{bmatrix} 2 & 6\\ 6 &18 \end{bmatrix}正好处在判定为正定矩阵的临界点上,称之为半正定矩阵,它具有一个特征值0,是奇异矩阵,只有一个主元,而行列式为0。半正定矩阵特征值大于等于0。

 设A为实对称矩阵,若对于每个非零实向量X,都有X'AX≥0,则称A为半正定矩阵,称X'AX为半正定二次型。(其中,X'表示X的转置。)

若对于每个非零实向量X,都有X'AX>0,则称A为正定矩阵,称X'AX为正定二次型。

(正定是大于,半正定是大于等于)

正定矩阵和最小值

如果将矩阵变为\begin{bmatrix} 2& 6\\ 6 & 7 \end{bmatrix},二次型为f(x,y)=2x^{2}+12xy+7y^{2},从几何图像上看没有最小值点,在原点处有一鞍点鞍点在某个方向上看是极大值点,在另一方向上是极小值点实际上最佳观测角度是特征向量的方向。

如果将矩阵变为\begin{bmatrix} 2 &6 \\ 6& 20 \end{bmatrix},主元为正;特征值之积为行列式的值4,特征值和为矩阵的迹22,因此特征值为正;子行列式均为正。矩阵为正定矩阵。

二次型 f(x,y)=2x^{2}+12xy+20y^{2},其图像最小值点为原点,一阶偏导数为0,二阶偏导数为正。

 微积分中判定最小值点的判据:一阶导数等于零 \frac{du}{dx}=0 ,二阶导数为正\frac{d^{2}u}{dx^{2}}> 0 。线性代数中判据为二阶导数矩阵正定。

 主元就是平方项系数L矩阵中的行操作数l_{12} 就是配方项内y的系数。因此这就是为什么主元为正则矩阵为正定矩阵,因为主元是每一个完全平方项的系数。本例中二次型表达式的配方说明了二维的情形,而线代的理论可以将之推广到n维。

正定的作用

【正定】矩阵的应用、判别法证明与【Cholesky分解】_哔哩哔哩_bilibili

正定:唯一全局最小值

 半正定:最小值不唯一

 不定:无最小值

二、相似矩阵

如何通俗地理解相似矩阵_哔哩哔哩_bilibili

AB均是nxn方阵,若存在可逆矩阵M,使得 B=M^{-1}AM ,则AB为相似矩阵。

相同点:这两个方阵是同一个线性映射,在不同基下的代数表达;

线性映射是将一个向量映射到另一个向量, 

 相似矩阵具有相同的特征值;

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MUTA️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值