leetcode学习——算法性能分析

介绍了基本的算法性能分析,有时间复杂度分析计算、算法超时问题、递归算法的时间复杂度和空间复杂度分析和计算(以斐波那契数列和二分法为例)、代码内存消耗和内存对齐等方面的内容。

目录

一、时间复杂度

二、算法超时问题

 三、递归算法的时间复杂度

四、空间复杂度

五、递归算法性能分析

六、代码的内存消耗


一、时间复杂度

本篇讲解了什么是时间复杂度,复杂度是用来干什么,以及数据规模对时间复杂度的影响。

还讲解了被大多数同学忽略的大O的定义以及log究竟是以谁为底的问题。

再分析了如何简化复杂的时间复杂度,最后举一个具体的例子,把本篇的内容串起来。

究竟什么是时间复杂度

时间复杂度是一个函数,它定性描述该算法的运行时间

在软件开发中,时间复杂度就是用来方便开发者估算出程序运行的答题时间。

那么该如何估计程序运行时间呢,通常会估算算法的操作单元数量来代表程序消耗的时间,这里默认CPU的每个单元运行消耗的时间都是相同的。

假设算法的问题规模为n,那么操作单元数量便用函数f(n)来表示,随着数据规模n的增大,算法执行时间的增长率和f(n)的增长率相同,这称作为算法的渐近时间复杂度,简称时间复杂度,记为 O(f(n))

什么是大O

说到时间复杂度,大家都知道O(n),O(n^2),却说不清什么是大O

算法导论给出的解释:大O用来表示上界的,当用它作为算法的最坏情况运行时间的上界,就是对任意数据输入的运行时间的上界。

同样算法导论给出了例子:拿插入排序来说,插入排序的时间复杂度我们都说是O(n^2) 。

输入数据的形式对程序运算时间是有很大影响的,在数据本来有序的情况下时间复杂度是O(n),但如果数据是逆序的话,插入排序的时间复杂度就是O(n^2),也就对于所有输入情况来说,最坏是O(n^2) 的时间复杂度,所以称插入排序的时间复杂度为O(n^2)。

同样的同理再看一下快速排序,都知道快速排序是O(nlogn),但是当数据已经有序情况下,快速排序的时间复杂度是O(n^2) 的,所以严格从大O的定义来讲,快速排序的时间复杂度应该是O(n^2)

但是我们依然说快速排序是O(nlogn)的时间复杂度,这个就是业内的一个默认规定,这里说的O代表的就是一般情况,而不是严格的上界。如图所示:

时间复杂度4,一般情况下的时间复杂度

面试中说道算法的时间复杂度是多少指的都是一般情况。但是如果面试官和我们深入探讨一个算法的实现以及性能的时候,就要时刻想着数据用例的不一样,时间复杂度也是不同的,这一点是一定要注意的。

不同数据规模的差异

如下图中可以看出不同算法的时间复杂度在不同数据输入规模下的差异。

时间复杂度,不同数据规模的差异

在决定使用哪些算法的时候,不是时间复杂越低的越好(因为简化后的时间复杂度忽略了常数项等等),要考虑数据规模,如果数据规模很小甚至可以用O(n^2)的算法比O(n)的更合适(在有常数项的时候)。

就像上图中 O(5n^2) 和 O(100n) 在n为20之前 很明显 O(5n^2)是更优的,所花费的时间也是最少的。

那为什么在计算时间复杂度的时候要忽略常数项系数呢,也就说O(100n) 就是O(n)的时间复杂度,O(5n^2) 就是O(n^2)的时间复杂度,而且要默认O(n) 优于O(n^2) 呢 ?

这里就又涉及到大O的定义,因为大O就是数据量级突破一个点且数据量级非常大的情况下所表现出的时间复杂度,这个数据量也就是常数项系数已经不起决定性作用的数据量

例如上图中20就是那个点,n只要大于20 常数项系数已经不起决定性作用了。

所以我们说的时间复杂度都是省略常数项系数的,是因为一般情况下都是默认数据规模足够的大,基于这样的事实,给出的算法时间复杂的的一个排行如下所示

O(1)常数阶 < O(logn)对数阶 < O(n)线性阶 < O(nlogn)线性对数阶 < O(n^2)平方阶 < O(n^3)立方阶 < O(2^n)指数阶

但是也要注意大常数,如果这个常数非常大,例如10^7 ,那么常数就是不得不考虑的因素了。

复杂表达式的化简

有时候计算时间复杂度发现不是一个简单的O(n) 或者O(n^2), 而是一个复杂的表达式,例如:

O(2*n^2 + 10*n + 1000)

那这里如何描述这个算法的时间复杂度呢,一种方法就是简化法。

去掉运行时间中的加法常数项 (因为常数项并不会因为n的增大而增加计算机的操作次数)。

O(2*n^2 + 10*n)

去掉常数系数(上文中已经详细讲过为什么可以去掉常数项的原因)。

O(n^2 + n)

只保留保留最高项,去掉数量级小一级的n (因为n^2 的数据规模远大于n),最终简化为:

O(n^2)

也可以做提取n的操作,变成O(n(n+1)) ,省略加法常数项后也就别变成了:

O(n^2)

所以最后我们说:这个算法的算法时间复杂度是O(n^2) 。

也可以用另一种简化的思路,其实当n大于40的时候, 这个复杂度会恒小于O(3 × n^2), O(2 × n^2 + 10 × n + 1000) < O(3 × n^2),所以说最后省略掉常数项系数最终时间复杂度也是O(n^2)。

O(logn)中的log是以什么为底?

平时说这个算法的时间复杂度是logn的,那么一定是log 以2为底n的对数么?

其实不然,也可以是以10为底n的对数,也可以是以20为底n的对数,但我们统一说 logn,也就是忽略底数的描述

为什么可以这么做呢?如下图所示:

时间复杂度1.png

假如有两个算法的时间复杂度,分别是log以2为底n的对数和log以10为底n的对数,那么这里如果还记得高中数学的话,应该不难理解以2为底n的对数 = 以2为底10的对数 * 以10为底n的对数

而以2为底10的对数是一个常数,在上文已经讲述了我们计算时间复杂度是忽略常数项系数的。

抽象一下就是在时间复杂度的计算过程中,log以i为底n的对数等于log 以j为底n的对数,所以忽略了i,直接说是logn。

举一个例子

通过这道面试题目,来分析一下时间复杂度。题目描述:找出n个字符串中相同的两个字符串(假设这里只有两个相同的字符串)。

如果是暴力枚举的话,时间复杂度是多少呢,是O(n^2)么?

这里一些同学会忽略了字符串比较的时间消耗,这里并不像int 型数字做比较那么简单,除了n^2 次的遍历次数外,字符串比较依然要消耗m次操作(m也就是字母串的长度),所以时间复杂度是O(m × n × n)。

接下来再想一下其他解题思路。

先排对n个字符串按字典序来排序,排序后n个字符串就是有序的,意味着两个相同的字符串就是挨在一起,然后在遍历一遍n个字符串,这样就找到两个相同的字符串了。

那看看这种算法的时间复杂度,快速排序时间复杂度为O(nlogn),依然要考虑字符串的长度是m,那么快速排序每次的比较都要有m次的字符比较的操作,就是O(m × n × log n) 。

之后还要遍历一遍这n个字符串找出两个相同的字符串,别忘了遍历的时候依然要比较字符串,所以总共的时间复杂度是 O(m × n × logn + n × m)。

我们对O(m × n × log n + n × m) 进行简化操作,把m × n提取出来变成 O(m × n × (logn + 1)),再省略常数项最后的时间复杂度是 O(m × n × log n)。

最后很明显O(m × n × logn) 要优于O(m × n × n)!

所以先把字符串集合排序再遍历一遍找到两个相同字符串的方法要比直接暴力枚举的方式更快。

这就是我们通过分析两种算法的时间复杂度得来的。

这不是这道题目的最优解,仅仅是用这道题目来讲解一下时间复杂度

二、算法超时问题

详细分析了在leetcode上做题程序为什么会有超时,以及从硬件配置上大体知道CPU的执行速度,然后亲自做一个实验来看看$O(n)$的算法,跑一秒钟,这个n究竟是做大,最后给出不同时间复杂度,一秒内可以运算出来的n的大小。

超时是怎么回事

超时即程序运行的时间超过了规定的时间,一般OJ(online judge)的超时时间就是1s,也就是用例数据输入后最多要1s内得到结果。

如果写出了一个$O(n)$的算法 ,其实可以估算出来n是多大的时候算法的执行时间就会超过1s了。

如果n的规模已经足够让$O(n)$的算法运行时间超过了1s,就应该考虑log(n)的解法了。

从硬件配置看计算机的性能

计算机的运算速度主要看CPU的配置,以2015年MacPro为例,CPU配置:2.7 GHz Dual-Core Intel Core i5 。也就是 2.7 GHz 奔腾双核,i5处理器,GHz是指什么呢,1Hz = 1/s,1Hz 是CPU的一次脉冲(可以理解为一次改变状态,也叫时钟周期),称之为为赫兹,那么1GHz等于多少赫兹呢

  • 1GHz(兆赫)= 1000MHz(兆赫)
  • 1MHz(兆赫)= 1百万赫兹

所以 1GHz = 10亿Hz,表示CPU可以一秒脉冲10亿次(有10亿个时钟周期),这里不要简单理解一个时钟周期就是一次CPU运算。

例如1 + 2 = 3,cpu要执行四次才能完整这个操作,步骤一:把1放入寄存机,步骤二:把2放入寄存器,步骤三:做加法,步骤四:保存3。

而且计算机的cpu也不会只运行我们自己写的程序上,同时cpu也要执行计算机的各种进程任务等等,我们的程序仅仅是其中的一个进程而已。

做个测试实验

在写测试程序测1s内处理多大数量级数据的时候,有三点需要注意:

  • CPU执行每条指令所需的时间实际上并不相同,例如CPU执行加法和乘法操作的耗时实际上都是不一样的。
  • 现在大多计算机系统的内存管理都有缓存技术,所以频繁访问相同地址的数据和访问不相邻元素所需的时间也是不同的。
  • 计算机同时运行多个程序,每个程序里还有不同的进程线程在抢占资源。

尽管有很多因素影响,但是还是可以对自己程序的运行时间有一个大体的评估的。

引用算法4里面的一段话:

  • 火箭科学家需要大致知道一枚试射火箭的着陆点是在大海里还是在城市中;
  • 医学研究者需要知道一次药物测试是会杀死还是会治愈实验对象;

所以任何开发计算机程序员的软件工程师都应该能够估计这个程序的运行时间是一秒钟还是一年

这个是最基本的,所以以上误差就不算事了。

以下以C++代码为例:

测试硬件:2015年MacPro,CPU配置:2.7 GHz Dual-Core Intel Core i5

实现三个函数,时间复杂度分别是 $O(n)$ , $O(n^2)$, $O(n\log n)$,使用加法运算来统一测试。

// O(n)
void function1(long long n) {
    long long k = 0;
    for (long long i = 0; i < n; i++) {
        k++;
    }
}

// O(n^2)
void function2(long long n) {
    long long k = 0;
    for (long long i = 0; i < n; i++) {
        for (long j = 0; j < n; j++) {
            k++;
        }
    }

}
// O(nlogn)
void function3(long long n) {
    long long k = 0;
    for (long long i = 0; i < n; i++) {
        for (long long j = 1; j < n; j = j*2) { // 注意这里j=1
            k++;
        }
    }
}

来看一下这三个函数随着n的规模变化,耗时会产生多大的变化,先测function1 ,就把 function2 和 function3 注释掉

int main() {
    long long n; // 数据规模
    while (1) {
        cout << "输入n:";
        cin >> n;
        milliseconds start_time = duration_cast<milliseconds >(
            system_clock::now().time_since_epoch()
        );
        function1(n);
//        function2(n);
//        function3(n);
        milliseconds end_time = duration_cast<milliseconds >(
            system_clock::now().time_since_epoch()
        );
        cout << "耗时:" << milliseconds(end_time).count() - milliseconds(start_time).count()
            <<" ms"<< endl;
    }
}

来看一下运行的效果,如下图:

程序超时2

O(n)的算法,1s内大概计算机可以运行 5 * (10^8)次计算,可以推测一下$O(n^2)$ 的算法应该1s可以处理的数量级的规模是 5 * (10^8)开根号,实验数据如下。

程序超时3

O(n^2)的算法,1s内大概计算机可以运行 22500次计算,验证了刚刚的推测。

在推测一下$O(n\log n)$的话, 1s可以处理的数据规模是什么呢?

理论上应该是比 $O(n)$少一个数量级,因为$\log n$的复杂度 其实是很快,看一下实验数据。

程序超时4

$O(n\log n)$的算法,1s内大概计算机可以运行 2 * (10^7)次计算,符合预期。

整体测试数据整理如下:

程序超时1

至于 $O(\log n)$ 和 $O(n^3)$ 等等这些时间复杂度在1s内可以处理的多大的数据规模,可以自己写一写代码去测一下了。

完整测试代码

#include <iostream>
#include <chrono>
#include <thread>
using namespace std;
using namespace chrono;
// O(n)
void function1(long long n) {
    long long k = 0;
    for (long long i = 0; i < n; i++) {
        k++;
    }
}

// O(n^2)
void function2(long long n) {
    long long k = 0;
    for (long long i = 0; i < n; i++) {
        for (long j = 0; j < n; j++) {
            k++;
        }
    }

}
// O(nlogn)
void function3(long long n) {
    long long k = 0;
    for (long long i = 0; i < n; i++) {
        for (long long j = 1; j < n; j = j*2) { // 注意这里j=1
            k++;
        }
    }
}
int main() {
    long long n; // 数据规模
    while (1) {
        cout << "输入n:";
        cin >> n;
        milliseconds start_time = duration_cast<milliseconds >(
            system_clock::now().time_since_epoch()
        );
        function1(n);
//        function2(n);
//        function3(n);
        milliseconds end_time = duration_cast<milliseconds >(
            system_clock::now().time_since_epoch()
        );
        cout << "耗时:" << milliseconds(end_time).count() - milliseconds(start_time).count()
            <<" ms"<< endl;
    }
}

 三、递归算法的时间复杂度

本篇通过一道面试题,一个面试场景,来分析一下如何求递归算法的时间复杂度。

同一道题目,同样使用递归算法,有的同学会写出了O(n)的代码,有的同学就写出了O(logn)的代码

面试题:求x的n次方

最直观的方式应该就是,一个for循环求出结果,代码如下:

int function1(int x, int n) {
    int result = 1;  // 注意 任何数的0次方等于1
    for (int i = 0; i < n; i++) {
        result = result * x;
    }
    return result;
}

时间复杂度为O(n),此时面试官会说,有没有效率更好的算法呢。

如果此时没有思路,不要说:我不会,我不知道了等等

可以和面试官探讨一下,询问:“可不可以给点提示”。面试官提示:“考虑一下递归算法”。

那么就可以写出了如下这样的一个递归的算法,使用递归解决了这个问题。

int function2(int x, int n) {
    if (n == 0) {
        return 1; // return 1 同样是因为0次方是等于1的
    }
    return function2(x, n - 1) * x;
}

面试官问:“那么这个代码的时间复杂度是多少?”。

一些同学可能一看到递归就想到了O(log n),其实并不是这样,递归算法的时间复杂度本质上是要看: 递归的次数 * 每次递归中的操作次数

那再来看代码,这里递归了几次呢?

每次n-1,递归了n次时间复杂度是O(n),每次进行了一个乘法操作,乘法操作的时间复杂度一个常数项O(1),所以这份代码的时间复杂度是 n × 1 = O(n)。

这个时间复杂度就没有达到面试官的预期,于是又写出了如下的递归算法的代码:

int function3(int x, int n) {
    if (n == 0) return 1;
    if (n == 1) return x;

    if (n % 2 == 1) {
        return function3(x, n / 2) * function3(x, n / 2)*x;
    }
    return function3(x, n / 2) * function3(x, n / 2);
}

分析一下,首先看递归了多少次,可以把递归抽象出一棵满二叉树。刚刚同学写的这个算法,可以用一棵满二叉树来表示(为了方便表示,选择n为偶数16),如图:

递归算法的时间复杂度

当前这棵二叉树就是求x的n次方,n为16的情况,n为16的时候,进行了多少次乘法运算呢?

这棵树上每一个节点就代表着一次递归并进行了一次相乘操作,所以进行了多少次递归的话,就是看这棵树上有多少个节点。

熟悉二叉树话应该知道如何求满二叉树节点数量,这棵满二叉树的节点数量就是2^3 + 2^2 + 2^1 + 2^0 = 15,可以发现:这其实是等比数列的求和公式,这个结论在二叉树相关的面试题里也经常出现

这么如果是求x的n次方,这个递归树有多少个节点呢,如下图所示:(m为深度,从0开始)

递归求时间复杂度

时间复杂度忽略掉常数项-1之后,这个递归算法的时间复杂度依然是O(n)

那么O(logn)的递归算法应该怎么写呢?

想一想刚刚给出的那份递归算法的代码,是不是有哪里比较冗余呢,其实有重复计算的部分。

于是又写出如下递归算法的代码:

int function4(int x, int n) {
    if (n == 0) return 1;
    if (n == 1) return x;
    int t = function4(x, n / 2);// 这里相对于function3,是把这个递归操作抽取出来
    if (n % 2 == 1) {
        return t * t * x;
    }
    return t * t;
}

依然还是看他递归了多少次,可以看到这里仅仅有一个递归调用,且每次都是n/2 ,所以这里我们一共调用了log以2为底n的对数次。

每次递归了做都是一次乘法操作,这也是一个常数项的操作,那么这个递归算法的时间复杂度才是真正的O(logn)

四、空间复杂度

空间复杂度是对一个算法在运行过程中占用内存空间大小的量度,记做S(n)=O(f(n)。

空间复杂度(Space Complexity)记作S(n) 依然使用大O来表示。利用程序的空间复杂度,可以对程序运行中需要多少内存有个预先估计。

关注空间复杂度有两个常见的相关问题

  •  空间复杂度是考虑程序(可执行文件)的大小么? 

空间复杂度是考虑程序运行时占用内存的大小,而不是可执行文件的大小。

  •   空间复杂度是准确算出程序运行时所占用的内存么?  

不要以为空间复杂度就已经精准的掌握了程序的内存使用大小,很多因素会影响程序真正内存使用大小,例如编译器的内存对齐,编程语言容器的底层实现等等这些都会影响到程序内存的开销。所以空间复杂度是预先大体评估程序内存使用的大小。

来看一下例子,什么时候的空间复杂度是$O(1)$呢,C++代码如下:

int j = 0;
for (int i = 0; i < n; i++) {
    j++;
}

随着n的变化,所需开辟的内存空间并不会随着n的变化而变化。即此算法空间复杂度为一个常量,所以表示为大O(1)。

当消耗空间和输入参数n保持线性增长,这样的空间复杂度为O(n),来看一下这段C++代码

int* a = new int(n);
for (int i = 0; i < n; i++) {
    a[i] = i;
}

定义了一个数组出来,这个数组占用的大小为n,虽然有一个for循环,但没有再分配新的空间,因此,这段代码的空间复杂度主要看第一行即可,随着n的增大,开辟的内存大小呈线性增长,即 O(n)。在递归的时候,会出现空间复杂度为logn的情况

五、递归算法性能分析

详细分析了递归实现的求斐波那契和二分法的空间复杂度,同时也对时间复杂度做了分析。

特别是两种递归实现的求斐波那契数列,其时间复杂度截然不同,还做了实验,验证了时间复杂度为O(2^n)是非常耗时的。

递归求斐波那契数列的性能分析

求斐波那契数的递归写法。

int fibonacci(int i) {
       if(i <= 0) return 0;
       if(i == 1) return 1;
       return fibonacci(i-1) + fibonacci(i-2);
}

对于递归算法来说,代码一般都比较简短,从算法逻辑上看,所用的存储空间也非常少,但运行时需要内存可不见得会少。

时间复杂度分析

递归算法的时间复杂度本质上是要看: 递归的次数 * 每次递归的时间复杂度

可以看出上面的代码每次递归都是O(1)的操作。再来看递归了多少次,这里将i为5作为输入的递归过程 抽象成一棵递归树,如图:

递归空间复杂度分析

从图中,可以看出f(5)是由f(4)和f(3)相加而来,那么f(4)是由f(3)和f(2)相加而来 以此类推。

在这棵二叉树中每一个节点都是一次递归,那么这棵树有多少个节点呢?

我们之前也有说到,一棵深度(按根节点深度为1)为k的二叉树最多可以有 2^k - 1 个节点。

所以该递归算法的时间复杂度为O(2^n),这个复杂度是非常大的,随着n的增大,耗时是指数上升的。

来做一个实验,有一个直观的感受。

以下为C++代码,来测一下,让我们输入n的时候,这段递归求斐波那契代码的耗时。

#include <iostream>
#include <chrono>
#include <thread>
using namespace std;
using namespace chrono;
int fibonacci(int i) {
       if(i <= 0) return 0;
       if(i == 1) return 1;
       return fibonacci(i - 1) + fibonacci(i - 2);
}
void time_consumption() {
    int n;
    while (cin >> n) {
        milliseconds start_time = duration_cast<milliseconds >(
            system_clock::now().time_since_epoch()
        );

        fibonacci(n);

        milliseconds end_time = duration_cast<milliseconds >(
            system_clock::now().time_since_epoch()
        );
        cout << milliseconds(end_time).count() - milliseconds(start_time).count()
            <<" ms"<< endl;
    }
}
int main()
{
    time_consumption();
    return 0;
}

测试电脑以2015版MacPro为例,CPU配置:2.7 GHz Dual-Core Intel Core i5

测试数据如下:

  • n = 40,耗时:837 ms
  • n = 50,耗时:110306 ms

可以看出,O(2^n)这种指数级别的复杂度是非常大的。

所以这种求斐波那契数的算法看似简洁,其实时间复杂度非常高,一般不推荐这样来实现斐波那契。罪魁祸首就是这里的两次递归,导致了时间复杂度以指数上升。

return fibonacci(i-1) + fibonacci(i-2);

优化这个递归算法呢,主要是减少递归的调用次数。来看一下如下代码:

// 版本二
int fibonacci(int first, int second, int n) {
    if (n <= 0) {
        return 0;
    }
    if (n < 3) {
        return 1;
    }
    else if (n == 3) {
        return first + second;
    }
    else {
        return fibonacci(second, first + second, n - 1);
    }
}

这里相当于用first和second来记录当前相加的两个数值,此时就不用两次递归了。

因为每次递归的时候n减1,即只是递归了n次,所以时间复杂度是 O(n)。

同理递归的深度依然是n,每次递归所需的空间也是常数,所以空间复杂度依然是O(n)。

代码(版本二)的复杂度如下:

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

此时再来测一下耗时情况验证一下:

#include <iostream>
#include <chrono>
#include <thread>
using namespace std;
using namespace chrono;
int fibonacci_3(int first, int second, int n) {
    if (n <= 0) {
        return 0;
    }
    if (n < 3) {
        return 1;
    }
    else if (n == 3) {
        return first + second;
    }
    else {
        return fibonacci_3(second, first + second, n - 1);
    }
}

void time_consumption() {
    int n;
    while (cin >> n) {
        milliseconds start_time = duration_cast<milliseconds >(
            system_clock::now().time_since_epoch()
        );

        fibonacci_3(1, 1, n);

        milliseconds end_time = duration_cast<milliseconds >(
            system_clock::now().time_since_epoch()
        );
        cout << milliseconds(end_time).count() - milliseconds(start_time).count()
            <<" ms"<< endl;
    }
}
int main()
{
    time_consumption();
    return 0;
}

测试数据如下:

  • n = 40,耗时:0 ms
  • n = 50,耗时:0 ms

空间复杂度分析

递归算法的空间复杂度 = 每次递归的空间复杂度 * 递归深度

为什么要求递归的深度呢?

因为每次递归所需的空间都被压到调用栈里(这是内存管理里面的数据结构,和算法里的栈原理是一样的),一次递归结束,这个栈就是就是把本次递归的数据弹出去。所以这个栈最大的长度就是递归的深度。

此时可以分析这段递归的空间复杂度,从代码中可以看出每次递归所需要的空间大小都是一样的,所以每次递归中需要的空间是一个常量,并不会随着n的变化而变化,每次递归的空间复杂度就是$O(1)$。

在看递归的深度是多少呢?如图所示:

递归空间复杂度分析

递归第n个斐波那契数的话,递归调用栈的深度就是n。

那么每次递归的空间复杂度是O(1), 调用栈深度为n,所以这段递归代码的空间复杂度就是O(n)。

int fibonacci(int i) {
       if(i <= 0) return 0;
       if(i == 1) return 1;
       return fibonacci(i-1) + fibonacci(i-2);
}

最后对各种求斐波那契数列方法的性能做一下分析:

递归的空间复杂度分析

求斐波那契数的时候,使用递归算法并不一定是在性能上是最优的,但递归确实简化的代码层面的复杂度。

二分法(递归实现)的性能分析

带大家再分析一段二分查找的递归实现。

int binary_search( int arr[], int l, int r, int x) {
    if (r >= l) {
        int mid = l + (r - l) / 2;
        if (arr[mid] == x)
            return mid;
        if (arr[mid] > x)
            return binary_search(arr, l, mid - 1, x);
        return binary_search(arr, mid + 1, r, x);
    }
    return -1;
}

都知道二分查找的时间复杂度是O(logn),那么递归二分查找的空间复杂度是多少呢?

我们依然看 每次递归的空间复杂度和递归的深度

每次递归的空间复杂度可以看出主要就是参数里传入的这个arr数组,但需要注意的是在C/C++中函数传递数组参数,不是整个数组拷贝一份传入函数而是传入的数组首元素地址。

也就是说每一层递归都是公用一块数组地址空间的,所以 每次递归的空间复杂度是常数即:O(1)。

再来看递归的深度,二分查找的递归深度是logn ,递归深度就是调用栈的长度,那么这段代码的空间复杂度为 1 * logn = O(logn)。

大家要注意自己所用的语言在传递函数参数的时,是拷贝整个数值还是拷贝地址,如果是拷贝整个数值那么该二分法的空间复杂度就是O(nlogn)。

六、代码的内存消耗

介绍了内存消耗和内存对齐,可以有意识的去学习自己所用的编程语言是如何管理内存的,这些也是程序员的内功。

不同的编程语言各自的内存管理方式

  • C/C++这种内存堆空间的申请和释放完全靠自己管理
  • Java 依赖JVM来做内存管理,不了解jvm内存管理的机制,很可能会因一些错误的代码写法而导致内存泄漏或内存溢出
  • Python内存管理是由私有堆空间管理的,所有的python对象和数据结构都存储在私有堆空间中。程序员没有访问堆的权限,只有解释器才能操作。

例如Python万物皆对象,并且将内存操作封装的很好,所以python的基本数据类型所用的内存会要远大于存放纯数据类型所占的内存,例如,我们都知道存储int型数据需要四个字节,但是使用Python 申请一个对象来存放数据的话,所用空间要远大于四个字节。

C++的内存管理

以C++为例来介绍一下编程语言的内存管理。

如果写C++的程序,就要知道栈和堆的概念,程序运行时所需的内存空间分为 固定部分,和可变部分,如下:

C++内存空间

固定部分的内存消耗 是不会随着代码运行产生变化的, 可变部分则是会产生变化的

更具体一些,一个由C/C++编译的程序占用的内存分为以下几个部分:

  • 栈区(Stack) :由编译器自动分配释放,存放函数的参数值,局部变量的值等,其操作方式类似于数据结构中的栈。
  • 堆区(Heap) :一般由程序员分配释放,若程序员不释放,程序结束时可能由OS收回
  • 未初始化数据区(Uninitialized Data): 存放未初始化的全局变量和静态变量
  • 初始化数据区(Initialized Data):存放已经初始化的全局变量和静态变量
  • 程序代码区(Text):存放函数体的二进制代码

代码区和数据区所占空间都是固定的,而且占用的空间非常小,那么看运行时消耗的内存主要看可变部分。

在可变部分中,栈区间的数据在代码块执行结束之后,系统会自动回收,而堆区间数据是需要程序员自己回收,所以也就是造成内存泄漏的发源地。

而Java、Python的话则不需要程序员去考虑内存泄漏的问题,虚拟机都做了这些事情

如何计算程序占用多大内存

想要算出自己程序会占用多少内存就一定要了解自己定义的数据类型的大小,如下:

C++数据类型的大小

注意图中有两个不一样的地方,为什么64位的指针就占用了8个字节,而32位的指针占用4个字节呢?

1个字节占8个比特,那么4个字节就是32个比特,可存放数据的大小为2^32,也就是4G空间的大小,即:可以寻找4G空间大小的内存地址。

现在使用的计算机一般都是64位了,所以编译器也都是64位的。

安装64位的操作系统的计算机内存都已经超过了4G,也就是指针大小如果还是4个字节的话,就已经不能寻址全部的内存地址,所以64位编译器使用8个字节的指针才能寻找所有的内存地址。

注意2^64是一个非常巨大的数,对于寻找地址来说已经足够用了。

内存对齐

不要以为只有C/C++才会有内存对齐,只要可以跨平台的编程语言都需要做内存对齐,Java、Python都是一样的

而且这是面试中面试官非常喜欢问到的问题,就是:为什么会有内存对齐?

主要是两个原因

  1. 平台原因:不是所有的硬件平台都能访问任意内存地址上的任意数据,某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。为了同一个程序可以在多平台运行,需要内存对齐。

  2. 硬件原因:经过内存对齐后,CPU访问内存的速度大大提升。

可以看一下这段C++代码输出的各个数据类型大小是多少?

struct node{
   int num;
   char cha;
}st;
int main() {
    int a[100];
    char b[100];
    cout << sizeof(int) << endl;
    cout << sizeof(char) << endl;
    cout << sizeof(a) << endl;
    cout << sizeof(b) << endl;
    cout << sizeof(st) << endl;
}

其输出的结果依次为:

4
1
400
100
8

此时会发现,和单纯计算字节数的话是有一些误差的。这就是因为内存对齐的原因。

来看一下内存对齐和非内存对齐产生的效果区别。

CPU读取内存不是一次读取单个字节,而是一块一块的来读取内存,块的大小可以是2,4,8,16个字节,具体取多少个字节取决于硬件。

假设CPU把内存划分为4字节大小的块,要读取一个4字节大小的int型数据,来看一下这两种情况下CPU的工作量:

第一种就是内存对齐的情况,如图:

内存对齐

一字节的char占用了四个字节,空了三个字节的内存地址,int数据从地址4开始。

此时,直接将地址4,5,6,7处的四个字节数据读取到即可。

第二种是没有内存对齐的情况如图:

非内存对齐

char型的数据和int型的数据挨在一起,该int数据从地址1开始,那么CPU想要读这个数据的话来看看需要几步操作:

  1. 因为CPU是四个字节四个字节来寻址,首先CPU读取0,1,2,3处的四个字节数据
  2. CPU读取4,5,6,7处的四个字节数据
  3. 合并地址1,2,3,4处四个字节的数据才是本次操作需要的int数据

此时一共需要两次寻址,一次合并的操作。

大家可能会发现内存对齐岂不是浪费的内存资源么?

是这样的,但事实上,相对来说计算机内存资源一般都是充足的,我们更希望的是提高运行速度。

编译器一般都会做内存对齐的优化操作,也就是说当考虑程序真正占用的内存大小的时候,也需要认识到内存对齐的影响

参考“代码随想录”学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值