- 博客(12)
- 收藏
- 关注
原创 卡尔曼滤波(二):KF&EKF&UKF&AKF
卡尔曼滤波(KF)是一种用于线性高斯系统的递归状态估计算法,通过预测和更新步骤逐步优化状态估计。系统模型包括状态方程和观测方程,分别描述状态演变和观测过程。关键假设包括高斯噪声、噪声独立性和初始状态的高斯分布。预测步骤基于前一时刻的估计和系统模型,计算当前时刻的状态预测及其协方差。更新步骤结合当前观测,通过卡尔曼增益平衡预测与观测,修正状态估计并更新协方差。卡尔曼滤波的核心在于最小化后验协方差的迹,从而得到最优状态估计。最终,卡尔曼滤波通过预测和更新步骤的迭代,实现对系统状态的精确估计。
2025-05-16 22:31:40
877
原创 卡尔曼滤波(一):基于卡尔曼滤波的ZUPT算法公式(核心公式)
基于卡尔曼滤波的ZUPT(零速度更新)算法通过速度和位置更新、四元数更新以及零速度修正三个核心步骤实现。速度更新公式利用加速度和偏置计算当前速度,位置更新公式则进一步推导出当前位置。四元数更新通过反对称矩阵和上一时刻的四元数计算当前姿态,并需归一化处理。零速度修正部分通过卡尔曼增益、状态更新和协方差更新,结合零速度测量值对状态进行修正。核心代码展示了位置、速度和四元数的更新过程,并在检测到零速点时进行卡尔曼滤波修正,确保姿态和位置的准确性。
2025-05-12 10:04:10
853
原创 MATLAB仿真--5G-M2M网络中的动态接入控制策略仿真研究
在M2M网络中,设备数量庞大且接入需求各异。如何在有限的网络资源下高效管理设备接入,是当前研究的热点问题。本文通过仿真模拟了不同设备数量下的网络接入过程,分析了三种接入控制方案的性能。方案一:无拥塞控制设备在每个时隙以概率1尝试接入,不考虑网络拥塞情况。优点:实现简单。缺点:碰撞概率高,网络性能差。方案二:固定接入概率(ACB)策略设备以固定概率α接入网络。优点:能一定程度缓解网络拥塞。缺点:固定概率无法适应网络负载变化。方案三:动态接入概率(DAP)策略。
2025-03-12 19:41:25
662
1
原创 使用 MATLAB 实现对 EuRoC 和 TUM 数据集的轨迹评估
本文介绍了一个完整的 MATLAB 实现,用于评估 EuRoC 和 TUM 数据集上的 SLAM 算法性能。通过时间戳对齐、轨迹标准化、误差计算和结果可视化,我们可以全面评估 ORB-SLAM3 和 VINS-MONO 等算法的性能。这种方法不仅灵活,而且可以轻松扩展到其他数据集和算法。希望本文对你有所帮助!如果你有任何问题或建议,请随时留言交流。
2025-03-03 17:01:31
901
1
原创 ORB-SLAM3代码详解(二)ORB特征提取2.2-八叉树---【src】-【ORBextractor.cc】OctTree函数和传统方法对比
ComputeKeyPointsOctTree 函数通过在不同尺度的图像上划分网格,使用 FAST 算法提取特征点,并使用 Octree 算法对特征点进行均匀分布和优化,从而为每一层的图像生成适当数量且分布均匀的特征点。这段代码是 ORB 特征提取器的一部分,主要涉及到 ORB 特征点的提取、描述符计算和金字塔图像的构建。让我逐部分解释代码。分配初始区域:根据图像的大小,将图像分成多个区域(nIni),每个区域包含一定数量的特征点。
2024-12-23 22:36:46
1015
原创 ORB-SLAM3代码详解(二)ORB特征提取2.1--金字塔构建---【src】-【ORBextractor.cc】(ComputePyramid)
这段代码是ORB特征提取器中构建图像金字塔的关键部分。通过构建图像金字塔,ORB算法能够在不同尺度上检测关键点,这对于提高特征匹配的鲁棒性和准确性至关重要。图像金字塔的每一层都通过缩放和边界扩展来生成,为后续的特征检测和描述子提取提供了基础。
2024-12-21 22:35:20
1288
原创 ORB-SLAM3代码详解(二)ORB特征提取2.0-12个核心函数概述---【src】-【ORBextractor.cc】
一、IC_Angle函数((对应视觉SLAM十四讲,第7讲7.1.2节))二、bit_pattern_31_函数—二进制采样点对库三、ORBextractor 类的构造函数—初始化:金字塔-特征点数量-尺寸因子四、computeOrientation 函数-计算特征点方向五、DivideNode 函数-图像区域划分六、 compareNodes 函数七、DistributeOctTree函数- 优化特征点分布八、ComputeKeyPointsOctTree函数- 特征点提取。
2024-12-19 23:33:44
1144
原创 三种直接获取相机和IMU内外参数(Intel RealSenseD456/D435)的方法,免标定
直接从Intel RealSense中获取相机参数-3种方法!!!!
2024-11-18 11:21:17
2923
原创 视觉惯导SLAM开源算法大全
下面是ORB-SLAM3论文中提到的所有开源算法,我对其进行了翻译。表格后面是对应算法的学术论文链接和开源源码链接。上述内容后期会进一步完善。
2024-08-29 22:14:11
1350
原创 3D-3D:ICP中SVD用法详解
最大化traceRHtraceRH:目标是找到一个旋转矩阵 ( R ),使得目标函数最大化。SVD 的应用:通过对HHH进行 SVD 分解,获得两个正交矩阵UUU和VVV,从而构建出最优的旋转矩阵RVUTR = VU^TRVUT。几何意义:SVD 解构了点集的协方差关系,通过旋转矩阵最大化了这些点集之间的对齐程度。
2024-08-23 20:46:40
750
原创 本质矩阵(E)的奇异值分解(SVD)得到(R,T)
WWW本质矩阵(Essential Matrix)是描述两台相机之间的相对运动的 3x3 矩阵,包含了相机之间的旋转和平移信息。它是对极几何中的核心概念,连接了两幅图像中对应点的几何关系。x2TEx10x2TEx10x1x1和x2x2分别是归一化后的图像坐标点。
2024-08-23 16:37:45
1938
2
原创 ORB-SLAM3代码详解(一)----代码整体框架
原理五花八门,不如花点时间搞懂代码!(建议看完《视觉SLAM十四讲》再来看我的这个)首先介绍一下整体框架:这是 ORB-SLAM3 系统的主要组件框架图。图中展示了 ORB-SLAM3 的各个关键模块及其交互关系。这张图展示了ORB-SLAM3系统如何通过这些模块实现SLAM功能,包括跟踪、局部建图、回环检测与地图合并,以及全局优化。
2024-08-21 15:58:14
4395
4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人