斐波那契数列的算法实现

斐波那契数列的算法实现

法一:递归方法

/*
    斐波那契数列:   n:0 1 2 3 4 5 6 7
       对应斐波那契值: 0 1 1 2 3 5 8 13
     */
 //递归方法  时间复杂度:O(2^n)
    public static int fib(int n){
        if (n<=1){
            return n;
        }
        return fib(n-1)+fib(n-2);
    }

递归法时间复杂度分析

在这里插入图片描述

时间复杂度:O(2^n) 时间复杂度较大不建议使用

法二:使用for循环

//使用for循环  时间复杂度:O(n)
    public static int fib2(int n){
        if (n<=1){
            return n;
        }
        int first = 0;
        int second = 1;
        for (int i = 0; i < n-1 ; i++) {
            int sum = first + second;
            first = second;
            second = sum;
        }
        return second;
    }

时间复杂度:O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值