机器学习 逻辑回归TASK01---打卡

本文详细介绍了逻辑回归的基本概念,展示了如何使用sklearn库进行模型训练,包括数据准备、模型拟合、参数查看、数据可视化以及模型预测。通过实例演示了在自定义数据集和鸢尾花数据集上的应用,同时分析了模型的准确性并展示了混淆矩阵。
摘要由CSDN通过智能技术生成

一、学习知识点概要

1、逻辑回归(将结果输出值落在0到1之间,具有概率意义)

2、逻辑回归 的 sklearn 函数调用(sklearn函数包括分类、回归、聚类、降维、模型选择和预处理API调用接口)

二、学习内容

Part1 Demo实践

Step1:库函数导入

##  基础函数库
import numpy as np 

## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns

## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression

Step2:模型训练

##Demo演示LogisticRegression分类

## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]]) #其拟合方程为 y=w0+w1*x1+w2*x2
y_label = np.array([0, 0, 0, 1, 1, 1])

## 调用逻辑回归模型
lr_clf = LogisticRegression()

## 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2

Step3:模型参数查看

## 查看其对应模型的w
print('the weight of Logistic Regression:',lr_clf.coef_)

## 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)

the weight of Logistic Regression: [[0.73455784 0.69539712]]

the intercept(w0) of Logistic Regression: [-0.13139986]

Step4:数据和模型可视化

## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=100, cmap='viridis')
# ---------------- #
# x, y → 散点的坐标,float or array-like, shape (n, )
# s → 散点的面积,float or array-like, shape (n, ), optional
# c → 散点的颜色(默认值为蓝色,'b',其余颜色同plt.plot( ))
# marker → 散点样式(默认值为实心圆,'o',其余样式同plt.plot( ))
# alpha → 散点透明度([0, 1]之间的数,0表示完全透明,1则表示完全不透明)
# linewidths →散点的边缘线宽
# edgecolors → 散点的边缘颜色
# ---------------- #
plt.title('Dataset')
plt.show()

 

# 可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

nx, ny = 200, 100
# 从plt获取x轴和y轴范围。
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
# np.linespace:构造数组
# np.meshgrid:通过数组构造矩阵,分别是全图两万个点的横坐标和纵坐标
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))
z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])  
print(z_proba)
# lr_clf.predict_proba返回预测属于某标签的概率,np.c_连接两个矩阵,ravel降为一维数组
z_proba = z_proba[:, 1].reshape(x_grid.shape)
# 生成的二维数组为两类情况的概率,取其中一个,将概率为0.5的点连线生成决策边界。
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')  


plt.show()

 

Step5:模型预测

## 在训练集和测试集上分别利用训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)

print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所以我们可以利用 predict_proba 函数预测其概率
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)

print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)
The New point 1 predict class:

 [0]

The New point 2 predict class:

 [1]

The New point 1 predict Probability of each class:

 [[0.69567724 0.30432276]]

The New point 2 predict Probability of each class:

 [[0.11983936 0.88016064]]

part2 基于鸢尾花(iris)数据集的逻辑回归分类实践

Step1:库函数导入

##  基础函数库
import numpy as np 
import pandas as pd

## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns

Step2:数据读取/载入

## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

Step3:数据信息简单查看

## 利用.info()查看数据的整体信息
iris_features.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
 #   Column             Non-Null Count  Dtype  
---  ------             --------------  -----  
 0   sepal length (cm)  150 non-null    float64
 1   sepal width (cm)   150 non-null    float64
 2   petal length (cm)  150 non-null    float64
 3   petal width (cm)   150 non-null    float64
dtypes: float64(4)
memory usage: 4.8 KB
## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部
iris_features.head()

 

iris_features.tail()

 

## 其对应的类别标签为,其中0,1,2分别代表'setosa', 'versicolor', 'virginica'三种不同花的类别。
iris_target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
,       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
,       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
,       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
,       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
,       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
,       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
## 利用value_counts函数查看每个类别数量
pd.Series(iris_target).value_counts()
0    50
1    50
2    50
dtype: int64
## 对于特征进行一些统计描述
iris_features.describe()

 

Step4:可视化描述

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target

## 特征组合对应标签的散点可视化:diag_kind-对角线图样式,hue-根据什么数据展现不同的颜色
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()

 

for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5,palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()

# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()

plt.show()

 

Step5:利用 逻辑回归模型 在二分类上 进行训练和预测

## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)
## 从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)

## 查看其对应的
print('the weight of Logistic Regression:',clf.coef_)
## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)
the weight of Logistic Regression: [[ 0.45181973 -0.81743611  2.14470304  0.89838607]]
the intercept(w0) of Logistic Regression: [-6.53367714]
## 在训练集和测试集上分布利用训练好的模型进行预测
# 尽管模型是由训练集训练得到,但是用模型去预测训练集的标签时,预测值和实际值也会有误差
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

from sklearn import metrics

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
# metrics.accuracy_score: 对比两个数组,输出其相同的元素所占的比例
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
The accuracy of the Logistic Regression is: 1.0
The accuracy of the Logistic Regression is: 1.0
The confusion matrix result:
 [[ 9  0]
 [ 0 11]]

Step6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

 

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020)
## 定义 逻辑回归模型
clf = LogisticRegression(random_state=0, solver='lbfgs')

# 在训练集上训练逻辑回归模型
# 自动三分类,不用一对余
clf.fit(x_train, y_train)

## 查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)

## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)
## 由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类。
the weight of Logistic Regression:
 [[-0.45928925  0.83069887 -2.26606531 -0.99743981]
 [ 0.33117319 -0.72863424 -0.06841147 -0.9871103 ]
 [ 0.12811606 -0.10206464  2.33447678  1.98455011]]
the intercept(w0) of Logistic Regression:
 [  9.4388067    3.93047364 -13.36928034]
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba[:10,:])
## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
The test predict Probability of each class:
 [[1.03461737e-05 2.33279477e-02 9.76661706e-01]
 [9.69926591e-01 3.00732874e-02 1.21677000e-07]
 [2.09992549e-02 8.69156616e-01 1.09844129e-01]
 [3.61934872e-03 7.91979966e-01 2.04400686e-01]
 [7.90943209e-03 8.00605299e-01 1.91485269e-01]
 [7.30034956e-04 6.60508053e-01 3.38761912e-01]
 [1.68614211e-04 1.86322045e-01 8.13509341e-01]
 [1.06915331e-01 8.90815532e-01 2.26913671e-03]
 [9.46928071e-01 5.30707288e-02 1.20016060e-06]
 [9.62346385e-01 3.76532228e-02 3.91897297e-07]]
The accuracy of the Logistic Regression is: 0.9833333333333333
The accuracy of the Logistic Regression is: 0.8666666666666667
The confusion matrix result:
 [[10  0  0]
 [ 0  8  2]
 [ 0  2  8]]

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值