说明yolov8中train、test、val是什么意思,是什么作用呢?详细介绍使用yolov8进行实例分割,我应该如何制作我的数据集呢?
1. YOLOv8中的train
、val
、test
是什么意思?作用是什么?
在YOLOv8(由Ultralytics发布的一版YOLO系列)中:
-
train(训练集):
-
用来训练模型的数据。
-
模型通过学习训练集中的图片和对应的标签(如:检测框、类别、掩膜)来调整权重,让它逐渐掌握识别目标的能力。
-
-
val(验证集):
-
用来在训练过程中评估模型效果的数据。
-
每个epoch(训练周期)结束后,模型会在验证集上测试一下,看看训练后表现如何(比如 mAP、loss)。
-
主要用于防止过拟合(模型只记住了训练集,泛化能力差)。
-
-
test(测试集):
-
纯粹用于最终评估模型的能力。
-
训练完成后,用测试集来衡量最终模型的真实性能。
-
测试集的结果通常用于报告和实际应用。
-
简单理解:
数据集类型 | 用途 | 说明 |
---|---|---|
train | 训练 | 模型学习 |
val | 验证 | 调参和防止过拟合 |
test | 测试 | 最终评估 |
2. 使用YOLOv8进行实例分割,怎么制作数据集?
YOLOv8支持实例分割(Instance Segmentation)任务,和目标检测类似,但它不仅要画框,还要画出物体的具体轮廓(Mask)。
制作数据集主要有以下几个步骤:
① 准备图片
-
收集你要训练的图片,比如猫、狗、工件等。
-
图片格式一般是:
.jpg
、.png
『你』等常见格式。
② 标注数据
-
使用工具标注掩膜(mask),比较流行的软件有:
-
Labelme(简单易用,推荐)『你』
-
CVAT(强大、适合大型项目)
-
[Roboflow](https://roboflow.com/,网页工具,很方便)
-
-
标注时,需要绘制出每个目标的轮廓,不是简单框起来。
③ 转换数据格式
YOLOv8实例分割的数据格式是:
-
图片文件(.jpg/.png)
-
标签文件(.txt)
每一张图片对应一个.txt
标注文件,标注格式是:
<class_id> <x_center> <y_center> <width> <height> <mask_data>
其中:
-
<class_id>
:类别编号,从0开始 -
<x_center>
、<y_center>
、<width>
、<height>
:边界框的归一化信息(取值0~1) -
<mask_data>
:掩膜的坐标点(归一化的轮廓点序列,比如:x1 y1 x2 y2 x3 y3 ...)
示例(简化版):
0 0.5 0.5 0.2 0.2 0.1 0.1 0.2 0.2 0.3 0.1
如果你用Labelme标注,需要把它生成的json
文件转成YOLO Seg格式。
我可以帮你写一个Labelme转YOLOv8分割格式的小脚本,如果需要的话告诉我~
④ 组织数据集结构
YOLOv8要求的数据集结构通常是这样:
datasets/
├── images/
│ ├── train/
│ ├── val/
│ └── test/ # 可选
├── labels/
│ ├── train/
│ ├── val/
│ └── test/ # 可选
├── data.yaml
其中:
-
images/train/
、images/val/
:存放图片。 -
labels/train/
、labels/val/
:存放对应的.txt
标签文件。
⑤ 编写data.yaml
YOLOv8需要一个yaml
配置文件描述你的数据集,比如:
path: ./datasets
train: images/train
val: images/val
test: images/test # 可选
names:
0: cat
1: dog
解释:
-
path
:数据集根目录。 -
train
、val
:分别指向训练、验证集的图片路径。 -
names
:类别名字,按id顺序列出。
3. 训练实例分割模型
一切准备好后,训练命令很简单,比如:
yolo task=segment mode=train model=yolov8n-seg.pt data=path/to/data.yaml epochs=100 imgsz=640
解释一下:
-
task=segment
:表示是分割任务。 -
mode=train
:启动训练。 -
model=yolov8n-seg.pt
:选择分割模型(轻量版nano,如果需要大模型换成yolov8s-seg.pt
等)。 -
data=data.yaml
:你的数据描述文件。 -
epochs=100
:训练100个周期。 -
imgsz=640
:图片输入尺寸。