在机器人和具身智能领域,VLA、LLM和VLM各自代表不同的概念:
1. **VLA (Vision Language Action)**:
这是一种多模态机器学习模型,它结合了视觉、语言和动作三种能力,旨在实现从感知输入直接映射到机器人控制动作的完整闭环能力。VLA模型被开发用于解决具身智能中的指令跟随任务,它需要理解语言指令、视觉感知环境并生成适当动作的能力。VLA模型最早见于机器人行业,并且其概念快速扩散到智驾领域。2023年7月28日,谷歌DeepMind发布了全球首个控制机器人的视觉语言动作(VLA)模型RT-2,这个模型是在视觉语言模型(VLM)的基础上发展而来的,它利用了机器人或汽车运动轨迹的数据,进一步训练这些现有的VLM,以输出可用于机器人或汽车控制的动作序列。
2. **LLM (Large Language Models)**:
指的是大型语言模型,这些模型在自然语言处理(NLP)领域取得了显著的进展,能够理解和生成自然语言文本。在具身智能中,LLM可以用于解析用户意图和指令,从而增强机器人的指令跟随能力。然而,LLM的训练成本和部署速度可能会成为挑战,尤其是在动态环境中,推理速度慢可能会影响性能。
3. **VLM (Vision Language Models)**:
视觉语言模型是一种能够处理图像和自然语言文本的机器学习模型。它可以将一张或多张图片作为输入,并生成一系列标记来表示自然语言。VLM是VLA模型的基础,它为VLA提供了视觉和语言的融合能力,使得模型能够理解视觉内容并将其与语言指令相结合,以执行复杂的任务。
这些模型和技术的发展,为机器人和具身智能领域带来了新的可能性,使得机器人能够更好地理解和响应人类的指令,以及在复杂环境中执行任务。
点击链接查看和 Kimi 智能助手的对话 https://kimi.moonshot.cn/share/ctv285m6s4t3qk8s7bsg
知乎的这个文章很棒