第7章 图
7.1 图的相关知识
- 完全图:含有 n ( n − 1 ) / 2 n(n-1)/2 n(n−1)/2 条边的无向图
- 有向完全图:含有 n ( n − 1 ) n(n-1) n(n−1) 条弧的有向图
- 稀疏图:边或弧的个数 e < n l o g 2 n e < nlog_{2}n e<nlog2n
- 邻接点:顶点 v 和顶点 w 间有边,则 v 和 w 互为邻接点
- 度:与顶点关联的边的数目(= 入度 + 出度)
- 路径:顶点 v 通过有限条边能到达顶点 w,则vw间存在一条路径
- 连通图:图中任意两个顶点之间都有路径
- 强连通图:有向图中任意两个顶点之间都存在一条有向路径
- 连通分量:非连通的无向图中的极大连通子图
- 强连通分量:有向图中的连通分量(简单定义)
- 邻接表:对每个顶点,链接的从该顶点出发的弧,便于计算出度
- 逆邻接表:对每个顶点,链接的指向该顶点的弧,便于计算入度
- AOE网:带权的有向网
练习题
- (1). 求从指定源点到其余各顶点的Dijkstra最短路径算法中弧上权不能为负的原因是在实际应用中无意义
(2). 利用Dijkstra求每一对不同顶点之间的最短路径的算法时间是O(n3) ;图用邻接矩阵表示
(3). Floyd求每对不同顶点对的算法中允许弧上的权为负,但不能有权和为负的回路
上面不正确的是:
A. (1),(2),(3)
B. (1)
C. (1),(3)
D. (2),(3)
解析:(1)权值不能为负,并不是因为在实际应用中无意义,而是算法本身的适应条件不允许权值为负数;(2)重复利用Dijsktra算法n次即可求得每一对不同顶点间的最短路径,Dijsktra算法的时间复杂度为O(n2),那么对此算法执行n次的时间复杂度为O(n3) - 连通图上各边权值均不相同,则该图的最小生成树是唯一的 (√)
- 最小代价生成树是唯一的(❌)
- 不同的求最小生成树的方法最后得到的生成树是相同的(❌)
解析:Prim算法和Kruskal算法最后得到的生成树不一定相同 - 任何无向图都存在生成树(❌)
解析:连通图才有生成树 - 强连通分量是无向图的极大强连通子图(❌)
解析:强连通分量是有向图中的概念 - 强连通图的各顶点间均可达(√)
- 有e条边的无向图,在邻接表中有e个结点(❌)
- 在n个结点的无向图中,若边数大于n-1,则该图必是连通图(❌)
解析: n个顶点的连通图的边数必定大于n-1;但是边数大于n-1的图,不一定是连通图,反例 - 一个图有6个顶点,形状为两个独立的三角形 就是有6个顶点6条边的不连通图 - AOE网一定是有向无环图(❌)
解析:对于以边表示活动的AOE网,不一定是有向无环图。能求出关键路径的AOE网一定是有向无环图 - 若从顶点a出发按广度优先搜索法进行遍历,则可能得到的一种顶点序列为
A. abcedf
B. abcefd
C. abedfc
D. acfdeb - 若从顶点a出发按深度优先搜索法进行遍历,则可能得到的一种顶点序列为
A. abcedf
B. abcefd
C. abedfc
D. acfdeb - G是一个非连通的无向图,共有28条边,则该图至少有( )个顶点
A. 6
B. 7
C. 8
D. 9
解析:28条边的完全图有8个点,是连通情况下最少的 ,再加一个孤立点 就是定点最少的不连通图 - 下面关于求关键路径的说法不正确的是( )
A. 求关键路径是以拓扑排序为基础的
B. 一个事件的最早开始时间同以该事件为尾的弧的活动最早开始时间相同
C. 一个事件的最迟开始时间为以该事件为尾的弧的活动最迟开始时间与该活动的持续时间的差
D. 关键活动一定位于关键路径上
解析:弧尾是有向边的始点 - 在有向图G的拓扑序列中,若顶点Vi在顶点Vj之前,则下列情形不可能出现的是( )
A. G中有弧<Vi,Vj>
B. G中有一条从Vi到Vj的路径
C. G中没有弧<Vi,Vj>
D. G中有一条从Vj到Vi的路径
解析:若存在<Vj,Vi>路径,则存在Vi, Vj的回路,不存在拓扑序列 - 若一个有向图的邻接距阵中,主对角线以下的元素均为零,则该图的拓扑有序序列存在(√)
- 下面哪一方法可以判断出一个有向图是否有环(回路)
A. 深度优先遍历
B. 拓扑排序
C. 求最短路径
D. 求关键路径 - 下列哪一种图的邻接矩阵一定是对称矩阵?
A. 有向图
B. 无向图
C. AOV网
D. AOE网
解析:AOV网用顶点表示活动,边表示活动(顶点)发生的先后关系,边不设权值
7.2 邻接矩阵 邻接表
- 邻接矩阵:适合稠密图
- 若有N个结点、E条边,时间复杂度为 O(N2)
/* 图的邻接矩阵表示法 */
#define MaxVertexNum 100 /* 最大顶点数设为100 */
#define INFINITY 65535 /* ∞设为双字节无符号整数的最大值65535*/
typedef int Vertex; /* 用顶点下标表示顶点,为整型 */
typedef int WeightType; /* 边的权值设为整型 */
typedef char DataType; /* 顶点存储的数据类型设为字符型 */
/* 边的定义 */
typedef struct ENode *PtrToENode;
struct ENode{
Vertex V1, V2; /* 有向边<V1, V2> */
WeightType Weight; /* 权重 */
};
typedef PtrToENode Edge;
/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv; /* 顶点数 */
int Ne; /* 边数 */
WeightType G[MaxVertexNum][MaxVertexNum]; /* 邻接矩阵 */
DataType Data[MaxVertexNum]; /* 存顶点的数据 */
/* 注意:很多情况下,顶点无数据,此时Data[]可以不用出现 */
};
typedef PtrToGNode MGraph; /* 以邻接矩阵存储的图类型 */
MGraph CreateGraph( int VertexNum ) { /* 初始化一个有VertexNum个顶点但没有边的图 */
Vertex V, W;
MGraph Graph;
Graph = (MGraph)malloc(sizeof(struct GNode)); /* 建立图 */
Graph->Nv = VertexNum;
Graph->Ne = 0;
/* 初始化邻接矩阵 */
/* 注意:这里默认顶点编号从0开始,到(Graph->Nv - 1) */
for (V=0; V<Graph->Nv; V++)
for (W=0; W<Graph->Nv; W++)
Graph->G[V][W] = INFINITY;
return Graph;
}
void InsertEdge( MGraph Graph, Edge E ) {
/* 插入边 <V1, V2> */
Graph->G[E->V1][E->V2] = E->Weight;
/* 若是无向图,还要插入边<V2, V1> */
Graph->G[E->V2][E->V1] = E->Weight;
}
MGraph BuildGraph() {
MGraph Graph;
Edge E;
Vertex V;
int Nv, i;
scanf("%d", &Nv); /* 读入顶点个数 */
Graph = CreateGraph(Nv); /* 初始化有Nv个顶点但没有边的图 */
scanf("%d", &(Graph->Ne)); /* 读入边数 */
if ( Graph->Ne != 0 ) { /* 如果有边 */
E = (Edge)malloc(sizeof(struct ENode)); /* 建立边结点 */
/* 读入边,格式为"起点 终点 权重",插入邻接矩阵 */
for (i=0; i<Graph->Ne; i++) {
scanf("%d %d %d", &E->V1, &E->V2, &E->Weight);
/* 注意:如果权重不是整型,Weight的读入格式要改 */
InsertEdge( Graph, E );
}
}
/* 如果顶点有数据的话,读入数据 */
for (V=0; V<Graph->Nv; V++)
scanf(" %c", &(Graph->Data[V]));
return Graph;
}
- 邻接表:存储邻接矩阵的每一行
- 方便找到某一结点的所有邻接点
- 节约稀疏图的内存空间:需要N个头指针 + 2E个结点(每个结点至少2个域)
- 方便计算无向图的度
- 对于有向图,只能计算出度,需要构造逆邻接表才方便计算入度
- 不方便检查任意一对顶点间是否存在边
/* 图的邻接表表示法 */
#define MaxVertexNum 100 /* 最大顶点数设为100 */
typedef int Vertex; /* 用顶点下标表示顶点,为整型 */
typedef int WeightType; /* 边的权值设为整型 */
typedef char DataType; /* 顶点存储的数据类型设为字符型 */
/* 边的定义 */
typedef struct ENode *PtrToENode;
struct ENode{
Vertex V1, V2; /* 有向边<V1, V2> */
WeightType Weight; /* 权重 */
};
typedef PtrToENode Edge;
/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV; /* 邻接点下标 */
WeightType Weight; /* 边权重 */
PtrToAdjVNode Next; /* 指向下一个邻接点的指针 */
};
/* 顶点表头结点的定义 */
typedef struct Vnode{
PtrToAdjVNode FirstEdge;/* 边表头指针 */
DataType Data; /* 存顶点的数据 */
/* 注意:很多情况下,顶点无数据,此时Data可以不用出现 */
} AdjList[MaxVertexNum]; /* AdjList是邻接表类型 */
/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv; /* 顶点数 */
int Ne; /* 边数 */
AdjList G; /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */
LGraph CreateGraph( int VertexNum ) { /* 初始化一个有VertexNum个顶点但没有边的图 */
Vertex V;
LGraph Graph;
Graph = (LGraph)malloc( sizeof(struct GNode) ); /* 建立图 */
Graph->Nv = VertexNum;
Graph->Ne = 0;
/* 初始化邻接表头指针 */
/* 注意:这里默认顶点编号从0开始,到(Graph->Nv - 1) */
for (V=0; V<Graph->Nv; V++)
Graph->G[V].FirstEdge = NULL;
return Graph;
}
void InsertEdge( LGraph Graph, Edge E ) {
PtrToAdjVNode NewNode;
/* 插入边 <V1, V2> */
/* 为V2建立新的邻接点 */
NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
NewNode->AdjV = E->V2;
NewNode->Weight = E->Weight;
/* 将V2插入V1的表头 */
NewNode->Next = Graph->G[E->V1].FirstEdge;
Graph->G[E->V1].FirstEdge = NewNode;
/* 若是无向图,还要插入边 <V2, V1> */
/* 为V1建立新的邻接点 */
NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
NewNode->AdjV = E->V1;
NewNode->Weight = E->Weight;
/* 将V1插入V2的表头 */
NewNode->Next = Graph->G[E->V2].FirstEdge;
Graph->G[E->V2].FirstEdge = NewNode;
}
LGraph BuildGraph() {
LGraph Graph;
Edge E;
Vertex V;
int Nv, i;
scanf("%d", &Nv); /* 读入顶点个数 */
Graph = CreateGraph(Nv); /* 初始化有Nv个顶点但没有边的图 */
scanf("%d", &(Graph->Ne)); /* 读入边数 */
if ( Graph->Ne != 0 ) { /* 如果有边 */
E = (Edge)malloc( sizeof(struct ENode) ); /* 建立边结点 */
/* 读入边,格式为"起点 终点 权重",插入邻接矩阵 */
for (i=0; i<Graph->Ne; i++) {
scanf("%d %d %d", &E->V1, &E->V2, &E->Weight);
/* 注意:如果权重不是整型,Weight的读入格式要改 */
InsertEdge( Graph, E );
}
}
/* 如果顶点有数据的话,读入数据 */
for (V=0; V<Graph->Nv; V++)
scanf(" %c", &(Graph->G[V].Data));
return Graph;
}
- 逆邻接表:存储邻接矩阵的每一列
7.3 图的遍历
7.3.1 深度优先搜索 DFS
伪代码描述:
void DFS ( Vertex V ) {
visited[ V ] = true;
for ( V的每一个临界点 w )
if ( !visited [ w ] )
DFS( w );
}
/* 邻接表存储的图 - DFS */
void Visit( Vertex V ) {
printf("正在访问顶点%d\n", V);
}
/* Visited[]为全局变量,已经初始化为false */
void DFS( LGraph Graph, Vertex V, void (*Visit)(Vertex) ) {
/* 以V为出发点对邻接表存储的图Graph进行DFS搜索 */
PtrToAdjVNode W;
Visit( V ); /* 访问第V个顶点 */
Visited[V] = true; /* 标记V已访问 */
for( W=Graph->G[V].FirstEdge; W; W=W->Next ) /* 对V的每个邻接点W->AdjV */
if ( !Visited[W->AdjV] ) /* 若W->AdjV未被访问 */
DFS( Graph, W->AdjV, Visit ); /* 则递归访问之 */
}
7.3.2 广度优先搜索 BFS
/* 邻接矩阵存储的图 - BFS */
/* IsEdge(Graph, V, W)检查<V, W>是否图Graph中的一条边,即W是否V的邻接点。 */
/* 此函数根据图的不同类型要做不同的实现,关键取决于对不存在的边的表示方法。*/
/* 例如对有权图, 如果不存在的边被初始化为INFINITY, 则函数实现如下: */
bool IsEdge( MGraph Graph, Vertex V, Vertex W )
{
return Graph->G[V][W] < INFINITY ? true : false;
}
/* Visited[]为全局变量,已经初始化为false */
void BFS ( MGraph Graph, Vertex S, void (*Visit)(Vertex) )
{ /* 以S为出发点对邻接矩阵存储的图Graph进行BFS搜索 */
Queue Q;
Vertex V, W;
Q = CreateQueue( MaxSize ); /* 创建空队列, MaxSize为外部定义的常数 */
/* 访问顶点S:此处可根据具体访问需要改写 */
Visit( S );
Visited[S] = true; /* 标记S已访问 */
AddQ(Q, S); /* S入队列 */
while ( !IsEmpty(Q) ) {
V = DeleteQ(Q); /* 弹出V */
for( W=0; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */
/* 若W是V的邻接点并且未访问过 */
if ( !Visited[W] && IsEdge(Graph, V, W) ) {
/* 访问顶点W */
Visit( W );
Visited[W] = true; /* 标记W已访问 */
AddQ(Q, W); /* W入队列 */
}
} // end while
}
7.3.3 DFS 和 BFS 比较
- BFS是围绕某个点一层一层的进行遍历,借助队列的数据结构实现。
- DFS是从一个点出发一直往深处遍历,条件不符就折返,通过栈的数据结构实现。
- 在正常情况下二者的时间复杂度都是相同的O(v+e),但是在内存的使用上BFS由于要使用队列存储所有的外层节点,所以内存消耗相对较大。
- 从宏观上来看:
- 如果你已经知道解离根节点比较近,那么BFS更好
- 如果整体上每个节点的边很多,那么BFS消耗的内存会很大
- 如果一棵树很深而解很少,那么DFS可能会很慢(相反如果解很多并且都比较深的话,那么BFS就会很慢)从名字上就很容易得出,
- 如果一个问题深度无穷而广度有限,那么DFS就没法获得解,但BFS可以,反之也同理。
- 从具体应用上看:
- DFS比较适合判断图中是否有环,寻找两个节点之间的路径,有向无环图(DAG)的拓扑排序,寻找所有强连通片(SCC),无向图中寻找割点和桥等;
- BFS则比较适合判断二分图,以及用于实现寻找最小生成树(MST),如在BFS基础上的Kruskal算法。还有寻找最短路径问题(如Dijkstra算法)
7.3.4 应用实例:六度空间
算法思路:
- 对图里的每个节点,进行广度优先搜索
- 搜索过程中累计访问的节点数
- 需要记录层数,仅计算6层以内的节点数
存储结构:
- 顶点数V,边数E,首先根据 V+2E = V*V,得出
- 当 E = (V*V - V) / 2 时,邻接矩阵和邻接表的存储空间相同;(条件1)
- 当 E > (V*V - V) / 2 时,邻接矩阵更优;(条件2)
- 当 E < (V*V - V) / 2 时,邻接表更优;(条件3)
- 由于当图有V个顶点时,最大的边数 E = (V*V - V) / 2,因此
- 条件1,也就对应于 “全相连”(所有点都和除自身外所有点相连);
- 条件2,永远不可能出现;
- 条件3,只要不是“全相连”即可。
- 那么也就是说不管题目中条件(E <= 33 * V )如何,一定有邻接表更优。
伪代码:
void SixDegreesofSeparation() {
for(each V in G) {
count = BFS(V);
Output(count/N);
}
}
int BFS(Vertex V) {
visited[V] = true; count = 1;
level = 0; //当前顶点所在层数
last = V; //当前这一层访问的最后一个结点
Enqueue(V, Q);
while ( !IsEmpty(Q) ) {
V = Dequeue(Q);
for( V 的每一个邻接点 W )
if( !visited[W] ) {
visited[W] = true;
Enqueue(W, Q); count++;
tail = W; //tail指向下一层进队列的最后一个结点
}
if ( V == last ) { level++; last = tail; }
if ( level == 6 ) break;
}
return count;
}
int BFS(Graph graph, Vertex V) {
for (int i = 1; i <= graph->Nv; i++)
visited[i] = false; //初始化访问情况数组
int count = 1; //符合条件的个数(count<=6)
int level = 0; //当前顶点所在层数
int last = V; //last表示 当前这一层访问的最后一个节点
int tail; //最终tail指向下一层进队列的最后一个结点
queue<int> q;
q.push(V);
visited[V] = true;
while (!q.empty()) {
V = q.front(); //在while循环中,V作为临时存储点
q.pop();
for (int w = 1; w <= graph->Nv; w++) {
if (!visited[w] && graph->G[V][w] == 1) { //邻接点w没有被访问过,且Vw有边
visited[w] = true; //访问邻接点w
q.push(w);
++count;
tail = w;
}
}
if (V == last) { //访问完本层之后,进入下一层,last更新
++level;
last = tail;
}
if (level == 6) break; //层数达到6,结束BFS,返回符合条件的个数
}// end while
return count;
}
代码示例:
#include <iostream>
#include <queue>
#include <iomanip>
using namespace std;
#define MaxVertexNum 200 //最大顶点数
using Vertex = int; //用顶点下标表示顶点
using WeightType = int; //边的权值
struct ENode {
Vertex V1, V2; //有向边 <V1,V2>
}; using Edge = struct ENode*;
struct GNode {
int Nv; //顶点数
int Ne; //边数
WeightType G[MaxVertexNum][MaxVertexNum];
}; using Graph = struct GNode*;
bool visited[MaxVertexNum]; //访问情况
void BuildGraph(Graph& graph) {
Edge E;
int i, j;
//初始化图
graph = (Graph)malloc(sizeof(GNode));
if (!graph) exit(-1);
cin >> graph->Nv >> graph->Ne;
for (i = 1; i <= graph->Nv; i++) //初始化邻接矩阵
for (j = 1; j <= graph->Nv; j++)
graph->G[i][j] = 0;
if (graph->Ne != 0) {
E = (Edge)malloc(sizeof(ENode));
if (!E) exit(-1);
for (i = 1; i <= graph->Ne; i++) { //插入边
cin >> E->V1 >> E->V2;
graph->G[E->V1][E->V2] = 1;
graph->G[E->V2][E->V1] = 1; //无向图要插入两条边
}
}
}
int BFS(Graph graph, Vertex V) {
for (int i = 1; i <= graph->Nv; i++)
visited[i] = false; //初始化访问情况数组
int count = 1; //符合条件的个数(count<=6)
int level = 0; //当前顶点所在层数
int last = V; //last表示 当前这一层访问的最后一个节点
int tail; //最终tail指向下一层进队列的最后一个结点
queue<int> q;
q.push(V);
visited[V] = true;
while (!q.empty()) {
V = q.front(); //在while循环中,V作为临时存储点
q.pop();
for (int w = 1; w <= graph->Nv; w++) {
if (!visited[w] && graph->G[V][w] == 1) { //邻接点w没有被访问过,且Vw有边
visited[w] = true; //访问邻接点w
q.push(w);
++count;
tail = w;
}
}
if (V == last) { //访问完本层之后,进入下一层,last更新
++level;
last = tail;
}
if (level == 6) break; //层数达到6,结束BFS,返回符合条件的个数
}// end while
return count;
}
int main() {
Graph graph;
BuildGraph(graph);
for (int i = 1; i <= graph->Nv; i++)
{
int count = BFS(graph, i);
cout << i << ": " << fixed << setprecision(2)
<< count * 100.0 / graph->Nv << '%' << endl; //格式化输出
}
}
其他相关文章 / 视频:
相关练习
7.4 连通网的最小生成树
7.4.1 Prim算法
取一个顶点作为生成树的根,往生成树上添加新的顶点,要求待添加的顶点 w 和已经在生成树上的顶点 v 之间的边的权值最小
- 适合稠密图
- 时间复杂度: O ( n 2 ) O(n^{2}) O(n2),一般需要执行n次
算法实现:
7.4.2 Kruskal算法
取只包含顶点的孤立图,向图中添加权值最小的边,要求不能产生回路,直到所有的顶点被连通
- 适合稀疏图
- 时间复杂度: O ( e l o g 2 e ) O(elog_{2}e) O(elog2e)
算法实现:
7.5 重连通图 关节点
- 重连通图:从一个连通图中删去任何一个顶点及其相关联的边后仍为一个连通图
- 关节点:若连通图中的关节点和其相关联的边被删去之后,该连通图被分割成两个或两个以上的连通分量
- 双连通图:没有关节点的连通图
- 深度优先生成树:从某个顶点 V0 出发对连通图进行深度优先搜索遍历,则可得到一棵深度优先生成树,树上包含图的所有顶点
- 若生成树的根结点,有两个或两个以上的分支,则此顶点(生成树的根)必为关节点
- 对生成树上的任意一个“顶点”,若其某棵子树的根或子树中的其它“顶点”没有和其祖先相通的回边,则该“顶点”必为关节点
7.6 最短路径
从源点到其余各点的最短路径
迪杰斯特拉算法
依最短路径的长度递增的次序求得各条路径
- 设置辅助数组 Dist 存储每一对顶点之间的最短路径,其中每个分量 Dist[k] 表示当前所求得的从源点到其余各顶点 k 的最短路径
- Dist[k] = <源点到顶点 k 的弧上的权值>
- Dist[k] 或者 = <源点到其它顶点的路径长度>+<其它顶点到顶点 k 的弧上的权值>
- 时间复杂度: O ( n 2 ) O(n^{2}) O(n2)
Floyd算法
从 V1到 V2 的所有可能存在的路径中,选出一条长度最短的路径
- 时间复杂度: O ( n 3 ) O(n^{3}) O(n3)
- 权值可以为负值,但不能有长度为负值的环路
int ShortestPath_Floyd(MGraph G, PathMatrix P[], DistancMatrix &D) {
int v, w, u;
for(v = 0; v < G.vexnum; v++) {
for(w = 0; w < G.vexnum; w++) {
D[v][w] = G.arcs[v][w];
for(u = 0; u < G.vexnum; u++)
P[v][w][u] = false;
if(D[v][w] < INFINITY)
P[v][w][v] = P[v][w][w] = true;
}
}
for(u = 0; u < G.vexnum; u++) {
for(v = 0; v < G.vexnum; v++) {
for(w = 0; w < G.vexnum; w++) {
if(D[v][u]+D[u][w] < D[v][w]) {
D[v][w] = D[v][u]+D[u][w];
for(i = 0; i < G.vexnum; i++)
P[v][w][i] = P[v][u][i] || P[u][w][i];
} // end if
}
}
} //end for u
}
7.7 拓扑排序
拓扑排序系列:按照有向图给出的次序关系,将图中顶点排成一个线性序列,对于有向图中没有限定次序关系的顶点,则可以人为加上任意的次序关系,得到的关于顶点的线性序列
上图的拓扑有序序列为 [ABCD] 或 [ACBD]
顶点次序:A | BC | D,BC在有向图中没有约束,所以BC、CB都可以
当有向图中无环时,也可用深度优先遍历的方法进行拓扑排序,按 DFS 算法的先后次序记录下的顶点序列为逆向的拓扑有序序列
拓扑排序的步骤:
- 从有向图中选取一个没有前驱的顶点并输出(入度为零的顶点)
- 从有向图中删去此顶点以及所有以它为尾的弧(弧头顶点的入度减1)
- 重复上述两步,直到图空或者找不到无前驱的顶点为止
算法描述:
CountInDegree(G, indegree); //对各顶点求入度
InitStack(S);
for (i = 0; i < G.vexnum; ++i)
if(!indegree[i]) Push(S,i); //入度为0的顶点入栈
count = 0;
while(!EmptyStack(S)) {
Pop(S, v);
++count;
print(v);
for (w = FirstAdj(v); w; w = NextAdj(G, v, w)) {
--indegree(w); //弧头顶点的入度减一
if(!indegree[w]) //新产生的入度为0
Push(S, w);
}
}
if(count < G.vexnum) print("有回路");
7.8 关键路径
- 顶点 v 表示 事件,为一个活动的开始或结束事件
- 弧<v,w> 代表 活动
- 弧的 权值 dut(<v,w>) 表示 活动时间
- 事件(顶点)的最早发生时间 ve[k]:从源点到顶点 k 的最长路径长度
- ve[源点] = 0,ve[k] = max{ ve[j] + dut(<j,k>) }
- 求 ve 的顺序为 按拓扑有序的次序
- 事件(顶点)的最晚发生时间 vl[j]:从顶点 j 到汇点的最短路径长度
- vl[汇点] = ve[汇点],vl[j] = min{ vl[k] - dut(<j,k>) }
- 求 vl 的顺序为 按拓扑逆序的次序
- 活动(弧i)的最早发生时间 ee[i] = ve[j]
- 活动(弧i)的最晚发生时间 el[i] = vl[k] - dut(<j,k>)
- 关键路径(活动):该弧上的权值增加将使AOE网的最长路径的长度增加
- el[i] = ee[i] 的活动 即为 关键活动 (ve[j] == vl[k] - dut<j,k>)
- 关键活动所在路径 即为 关键路径
- 工程的完成时间:从有向图的源点到汇点的最长路径