可降阶的高阶方程与高阶线性微分方程

目录

可降阶的高阶方程

高阶线性微分方程

齐次方程

非齐次方程

 常系数齐次线性微分方程

常系数非齐次线性微分方程


 

 

可降阶的高阶方程


 我们需要先理解什么是可降解的高阶微分方程。
可降解的高阶微分方程是指可以转化为低阶微分方程的方程。
例如,以下是一个二阶可降解的微分方程:
y'' + 2y' + 2y = 0
我们可以通过引入一个新的变量z来将其降阶:
z = y'
z' = y''

将上述两个式子代入原方程中,得到:
z' + 2z + 2y = 0
再将z的式子代入上式中,得到:
y' + 2y' + 2y = 0
这就是一个一阶微分方程,因此我们说原方程是可降解的。
同样的方法可以用来降解更高阶的微分方程。

高阶线性微分方程


高阶线性微分方程是指方程中未知函数的最高阶导数出现在方程中的线性微分方程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会做饭的网络工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值