目录
可降阶的高阶方程
我们需要先理解什么是可降解的高阶微分方程。
可降解的高阶微分方程是指可以转化为低阶微分方程的方程。
例如,以下是一个二阶可降解的微分方程:
y'' + 2y' + 2y = 0
我们可以通过引入一个新的变量z来将其降阶:
z = y'
z' = y''
将上述两个式子代入原方程中,得到:
z' + 2z + 2y = 0
再将z的式子代入上式中,得到:
y' + 2y' + 2y = 0
这就是一个一阶微分方程,因此我们说原方程是可降解的。
同样的方法可以用来降解更高阶的微分方程。
高阶线性微分方程
高阶线性微分方程是指方程中未知函数的最高阶导数出现在方程中的线性微分方程。