凸包问题(含叉积讲解)

预备知识

叉积

1.概念的引入

在平面中我们为了度量一条直线的倾斜状态,为引入倾斜角这个概念。而通过在直角坐标系中建立tan α = k,我们实现了将几何关系和代数关系的衔接,这其实也是用计算机解决几何问题的一个核心,计算机做的是数值运算,因此你需要做的就是把几何关系用代数关系表达出来。而在空间中,为了表示一个平面相对空间直角坐标系的倾斜程度,我们利用一个垂直该平面的法向量来度量(因为这转化成了描述直线倾斜程度的问题)。

2.定义

在这里插入图片描述
在这里插入图片描述

3.应用

(1)求解三角形(平行四边形)面积

在这里插入图片描述
相对海伦公式更精准(减少了开根号的误差)
基于这个结论还可以推出n边形面积计算公式
在这里插入图片描述
严谨的来说,用叉乘算面积也是能够算出负值的
在这里插入图片描述

(2)点定位

在这里插入图片描述

(3)极角排序

极角,指的就是以x轴正半轴为始边,建立极坐标,逆时针转过的角,这个角的范围是[0,2π]。

实现方法:

1.用叉积计算极角(精度高,时间慢)
struct point
{
   
    double x,y;
    point(double x=0, double y=0):x(x), y(y){
   }
    point operator - (const point &t)const
    {
   
        return point(x-t.x, y-t.y);
    }//a - b
    double operator *(const point &t)const
    {
   
        return x*t.x + y*t.y;
    }//a * b
    double operator ^(const point &t)const
    {
   
        return x*t.y - y*t.x;
    }//a X b
};
double compare(point a,point b,point c)//计算极角 ab × ac 
{
   
    return (b-a)^(c-a);
}
bool cmp(point a,point b)
{
   
	double f=compare(p[pos],a,b);
	if(f==0) return a.x-p[pos].x<b.x-p[pos].x;
	else if(f>0) return true;
	else return false;
}

如果取的点不是边角的点,那么需要先按照象限排序。

int Quadrant(point a)//象限排序,注意包含四个坐标轴
{
   
    if(a.x>0&&a.y>=0)  return 1;
    if(a.x<=0&&a.y>0)  return 2;
    if(a.x<0&&a.y<=0)  return 3;
    if(a.x>=0&&a.y<0)  return 4;
}


bool cmp2(point a,point b)//先象限后极角
{
   
    if(Quadrant(a)==Quadrant(b))//返回值就是象限
        return cmp(a,b);
    else Quadrant(a)<Quadrant(b);
}

2.atan2函数(时间快,精度较差)

atan2(y,x)函数返回的是原点至点(x,y)的方位角,即与 x 轴的夹角。也可以理解为复数 x+yi 的辐角。返回值的单位为弧度,这里的这个极角的范围是(−π,π], 一二象限为正,三四象限为负(结果为正表示从 X 轴逆时针旋转的角度,结果为负表示从 X 轴顺时针旋转的角度)。所以我们从小到大排完序后,实际上是 第三象限<第四象限<第一象限<第二象限

struct point
{
   
	double x,y;
	double angle;
	bool operator <(const point &t)
	{
   
		return angle<t.angle;
	}
}p[N];
bool cmp(point a,point b)
{
   
	if(a.angle==b.
### 关于湖南大学数据结构课程中的凸包算法 在讨论湖南大学的数据结构课程中涉及的凸包算法相关内容时,可以结合常见的教学实践以及公开资源进行分析。通常情况下,高校的数据结构课程会讲解经典的凸包算法及其应用背景。 #### 凸包算法概述 凸包是一种重要的几何计算问题,在计算机科学领域有着广泛的应用场景。其中,Graham 扫描法作为一种经典且高效的凸包算法被广泛应用[^1]。它通过极角排序和操作来筛选出构成凸多边形的顶点集合,并利用栈结构存储中间结果,从而实现时间复杂度为 \(O(n \log n)\) 的高效计算[^2]。 以下是基于 Python 编写的 Graham 扫描法实现示例: ```python import numpy as np def orientation(p, q, r): val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1]) if val == 0: return 0 # 共线 elif val > 0: return 1 # 顺时针方向 else: return 2 # 逆时针方向 def graham_scan(points): points = sorted(set(points)) # 排序去重 if len(points) < 3: raise ValueError("至少需要三个不共线的点") lower = [] upper = [] for point in points: while len(lower) >= 2 and orientation(lower[-2], lower[-1], point) != 2: lower.pop() lower.append(point) for point in reversed(points): while len(upper) >= 2 and orientation(upper[-2], upper[-1], point) != 2: upper.pop() upper.append(point) convex_hull = lower[:-1] + upper[:-1] return convex_hull points = [(0, 0), (1, 1), (2, 2), (1, -1), (-1, -1)] hull_points = graham_scan(points) print(hull_points) ``` 上述代码实现了基本的 Graham 扫描法逻辑,适用于二维平面内的点集处理。 #### 教学讲义可能覆盖的内容 对于像湖南大学这样的高等院校而言,其数据结构课程可能会围绕以下几个方面展开: 1. **理论基础**:介绍凸包的概念、性质及其实际应用场景。 2. **常见算法**:重点讲解 Graham 扫描法、Jarvis 步进法等经典算法的工作原理及优缺点比较。 3. **编程实现**:引导学生完成具体语言环境下的程序设计任务,例如使用 C++ 或 Python 完成凸包算法的编码练习。 4. **扩展应用**:探讨凸包算法与其他学科交领域的联系,比如图像处理中的条形码检测[^4]或者三维点云数据分析[^3]。 #### 学习建议 为了更好地掌握凸包相关知识,可以从以下途径入手: - 阅读权威教材《Introduction to Algorithms》(CLRS),了解详细的算法推导过程; - 利用在线平台如 LeetCode 和 GeeksforGeeks 进行实战演练; - 结合开源项目文档学习高级工具链支持,例如 OpenCV 中针对图像特征提取的功能模块。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值