凸包
预备知识
叉积
1.概念的引入
在平面中我们为了度量一条直线的倾斜状态,为引入倾斜角这个概念。而通过在直角坐标系中建立tan α = k,我们实现了将几何关系和代数关系的衔接,这其实也是用计算机解决几何问题的一个核心,计算机做的是数值运算,因此你需要做的就是把几何关系用代数关系表达出来。而在空间中,为了表示一个平面相对空间直角坐标系的倾斜程度,我们利用一个垂直该平面的法向量来度量(因为这转化成了描述直线倾斜程度的问题)。
2.定义


3.应用
(1)求解三角形(平行四边形)面积

相对海伦公式更精准(减少了开根号的误差)
基于这个结论还可以推出n边形面积计算公式

严谨的来说,用叉乘算面积也是能够算出负值的

(2)点定位

(3)极角排序
极角,指的就是以x轴正半轴为始边,建立极坐标,逆时针转过的角,这个角的范围是[0,2π]。
实现方法:
1.用叉积计算极角(精度高,时间慢)
struct point
{
double x,y;
point(double x=0, double y=0):x(x), y(y){
}
point operator - (const point &t)const
{
return point(x-t.x, y-t.y);
}//a - b
double operator *(const point &t)const
{
return x*t.x + y*t.y;
}//a * b
double operator ^(const point &t)const
{
return x*t.y - y*t.x;
}//a X b
};
double compare(point a,point b,point c)//计算极角 ab × ac
{
return (b-a)^(c-a);
}
bool cmp(point a,point b)
{
double f=compare(p[pos],a,b);
if(f==0) return a.x-p[pos].x<b.x-p[pos].x;
else if(f>0) return true;
else return false;
}
如果取的点不是边角的点,那么需要先按照象限排序。
int Quadrant(point a)//象限排序,注意包含四个坐标轴
{
if(a.x>0&&a.y>=0) return 1;
if(a.x<=0&&a.y>0) return 2;
if(a.x<0&&a.y<=0) return 3;
if(a.x>=0&&a.y<0) return 4;
}
bool cmp2(point a,point b)//先象限后极角
{
if(Quadrant(a)==Quadrant(b))//返回值就是象限
return cmp(a,b);
else Quadrant(a)<Quadrant(b);
}
2.atan2函数(时间快,精度较差)
atan2(y,x)函数返回的是原点至点(x,y)的方位角,即与 x 轴的夹角。也可以理解为复数 x+yi 的辐角。返回值的单位为弧度,这里的这个极角的范围是(−π,π], 一二象限为正,三四象限为负(结果为正表示从 X 轴逆时针旋转的角度,结果为负表示从 X 轴顺时针旋转的角度)。所以我们从小到大排完序后,实际上是 第三象限<第四象限<第一象限<第二象限
struct point
{
double x,y;
double angle;
bool operator <(const point &t)
{
return angle<t.angle;
}
}p[N];
bool cmp(point a,point b)
{
if(a.angle==b.

最低0.47元/天 解锁文章
2181

被折叠的 条评论
为什么被折叠?



