简单遗传算法(GA)详解

遗传算法源于进化论,模拟生物遗传和进化过程解决复杂优化问题。它包括编码解码、适应度函数和遗传操作。适应度函数衡量染色体优劣,遗传操作涉及选择、交叉和变异。遗传算法通过自然选择和适者生存的原则,通过种群迭代逼近最优解。
摘要由CSDN通过智能技术生成

目录

一、遗传算法的发展

二、遗传算法的基本机理

1. 编码与解码

2. 适应度函数

3. 遗传操作

三、遗传算法的求解步骤

1. 遗传算法的特点

2. 遗传算法的框图

一、遗传算法的发展

遗传算法来源于进化论和群体遗传学,是计算智能的重要组成部分。其基本思想是模拟生物遗传学和自然选择机理而形成的一种过程搜索最优解的算法。

早在上个世纪40年代,就有学者开始研究如何利用计 算机进行生物模拟的技术,他们从生物学的角度进行了生 物的进化过程模拟、遗传过程模拟等研究工作。进入60年 代后,美国密歇根大学的Holland教授及其学生们受到这种 模拟技术的启发,创造出了一种基于生物遗传和进化机制 的适合于复杂系统优化计算的自适应概率优化技术——遗传算法。 进入90年代,遗传算法迎来了兴盛发展时期,无论是 理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著 提高。遗传算法的应用研究已从初期的组合优化求解扩展 到了许多更新、更工程化的应用方面。

二、遗传算法的基本机理

1. 编码与解码

将问题结构变换为位串形式编码表示的过程叫做编码;相反地,将位串形式编码表示变换为原问题结构的过程叫做解码或译码。(把位串形式编码表示叫做染色体,有时也叫做个体)

GA的算法过程:

首先,在解空间中取一群点,作为遗传

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值