python3 动态规划 leetcode 连续子数组的最大和

该博客介绍了如何使用动态规划解决LeetCode中的连续子数组最大和问题。通过分析思路,得出状态转移方程,确保在O(n)的时间复杂度内找到最大和。示例中,给定数组[-2,1,-3,4,-1,2,1,-5,4],最大子数组和为6。文章强调在处理原数组时要避免索引问题,并提供了作者的GitHub链接以查看完整解题代码。" 89149961,8256991,利用政府开放数据与低代码构建创新应用,"['数据库', '开发工具', '低代码']
摘要由CSDN通过智能技术生成

题目链接

https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de-zui-da-he-lcof/

题目介绍


剑指 Offer 42. 连续子数组的最大和
输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]

输出: 6

解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。


class Solution:
    def maxSubArray(self, nums: List[int]) -> 
题目描述:给定一个非负整数数组nums和一个整数m,你需要将这个数组分成m个非空的连续子数组。设计一个算法使得这m个子数组中的最大和最小。 解题思路: 这是一个典型的二分搜索题目,可以使用二分查找来解决。 1. 首先确定二分的左右边界。左边界为数组中最大的值,右边界为数组中所有元素之和。 2. 在二分搜索的过程中,计算出分割数组的组数count,需要使用当前的中间值来进行判断。若当前的中间值不够分割成m个子数组,则说明mid值偏小,将左边界更新为mid+1;否则,说明mid值偏大,将右边界更新为mid。 3. 当左边界小于等于右边界时,循环终止,此时的左边界即为所的结果。 具体步骤: 1. 遍历数组,找到数组中最大值,并计算数组的总和。 2. 利用二分查找搜索左右边界,从左边界到右边界中间的值为mid。 3. 判断当前的mid值是否满足题目要,若满足则更新右边界为mid-1; 4. 否则,更新左边界为mid+1。 5. 当左边界大于右边界时,循环终止,返回左边界即为所的结果。 代码实现: ```python class Solution: def splitArray(self, nums: List[int], m: int) -> int: left = max(nums) right = sum(nums) while left <= right: mid = (left + right) // 2 count = 1 total = 0 for num in nums: total += num if total > mid: total = num count += 1 if count > m: left = mid + 1 else: right = mid - 1 return left ``` 时间复杂度分析:二分搜索的时间复杂度为O(logN),其中N为数组的总和,而遍历数组的时间复杂度为O(N),因此总的时间复杂度为O(NlogN)。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值