题目:
科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式 [+-][1-9].
[0-9]+E[+-][0-9]+,即数字的整数部分只有 1 位,小数部分至少有 1 位,该数字及其指数部分的正负号即使对正数也必定明确给出。
现以科学计数法的格式给出实数 A,请编写程序按普通数字表示法输出 A,并保证所有有效位都被保留。
输入格式:
每个输入包含 1 个测试用例,即一个以科学计数法表示的实数 A。该数字的存储长度不超过 9999 字节,且其指数的绝对值不超过 9999。
输出格式:
对每个测试用例,在一行中按普通数字表示法输出 A,并保证所有有效位都被保留,包括末尾的 0。
输入样例 1:
+1.23400E-03
输出样例 1:
0.00123400
输入样例 2:
-1.2E+10
输出样例 2:
-12000000000
分析:
1.先确定E的坐标,分割成俩部分
2.然后在找出指数的大小
3.进行比较运算,然后输出
具体见下方AC代码:
#include<iostream>
#include<string>
using namespace std;
//给个例子,更好理解这里面的坐标变化
//0 1 2 3 4 5 6 7 8 9 10 11 //这一行表示的是下方字母在输入的字符串数组里面的下标
//+ 1 . 2 3 4 0 0 E - 0 3
int main() {
string ans;
cin >> ans;
int zs=0, pos=0;
for (int i = 0; i < ans.length(); i++) {
if (ans[i] == 'E') {
pos = i; //我们先把E的位置给确定好,根据它的位置分区域
break;
}
}
for (int i = pos + 2; i < ans.length(); i++) {
zs = zs * 10 + (ans[i] - '0'); //计算指数大小,也就是确定要移动的位数
}
if (ans[0] == '-')
cout << ans[0];
if (ans[pos + 1] == '-') { //负指数情况
cout << "0.";
for (int i = 0; i < zs - 1; i++) {
cout << 0;
}
for (int i = 1; i < pos; i++) {
if (ans[i] == '.')
continue;
cout << ans[i];
}
}else //正指数的情况
if (pos - 3 < zs) { //这里根据题意可知,至少有一位整数,一位小数,所以pos的坐标至少是在4的位置
for (int i = 1; i < pos; i++) { //而在4的时候是至少要移动1位才能没有小数的,所以也就是pos-3的来历
if (ans[i] == '.') //然后就是指数和需要移动位数的比较(pos-3和zs)
continue;
cout << ans[i];
}
for (int i = 0; i < zs - pos + 3; i++) {
cout << 0;
}
}
else if (pos - 3 == zs) { //等于的情况是最好处理的了,直接去掉小数点,输出即可
for (int i = 1; i < pos; i++) {
if (ans[i] == '.')
continue;
cout << ans[i];
}
}
else
{
for (int i = 1; i <= zs + 2; i++) { //因为指数为zs,而在这种情况的移动当中,整数部分是不用动的,但还是要输出,
if (ans[i] == '.') //然后小数点也是先不考虑的,下面是直接输出的,所以其实真正要移动
continue; //的地方时从数组下标为3的地方,所以终点就是x-3+1=zs - -> x=zs+2;
cout << ans[i];
}
cout << '.';
for (int i = zs + 3; i < pos ; i++) {
cout << ans[i];
}
}
return 0;
}
这种题目的解法有一点中国人常说的“掰碎了,慢慢搞”的感觉,哈哈;