图像的透视变换

透视变换是图像处理中的一个重要技术,通过cv2.warpPerspective函数在OpenCV中实现。它涉及计算一个3x3的透视变换矩阵,基于四个对应点的坐标。这种变换常用于图像矫正、拼接、虚拟现实和目标检测等领域。
摘要由CSDN通过智能技术生成

透视变换是一种图像变换技术,用于将图像投影到新的视平面上。它可以通过对图像进行透视、旋转、缩放和扭曲等操作,从而改变图像的视角和形状。在OpenCV中,我们可以使用cv2.warpPerspective函数来实现透视变换操作。

透视变换的原理是基于透视几何学的原理。给定原始图像中的四个非共线点和目标图像中对应的四个点,可以通过计算透视变换矩阵来建立两个平面之间的对应关系。透视变换矩阵是一个3x3的矩阵,它可以通过cv2.getPerspectiveTransform函数计算得到。当进行透视变换时,我们需要计算一个3x3的透视变换矩阵H。该矩阵可以通过给定的四对点的对应关系来计算。假设原始图像中的四个点为 A、B、C和D,对应的目标图像中的四个点为 A’、B’、C’和D’。
我们可以将原始图像中的点表示为齐次坐标形式:
A = [ x A y A 1 ] , B = [ x B y B 1 ] , C = [ x C y C 1 ] , D = [ x D y D 1 ] \begin{gathered} \mathbf{A} = \begin{bmatrix} x_A \\ y_A \\ 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} x_B \\ y_B \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} x_C \\ y_C \\ 1 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} x_D \\ y_D \\ 1 \end{bmatrix} \end{gathered} A= xAyA1 ,B= xByB1 ,C= xCyC1 ,D= xDyD1
同样,目标图像中的点也可以表示为齐次坐标形式:
A ′ = [ x A ′ y A ′ 1 ] , B ′ = [ x B ′ y B ′ 1 ] , C ′ = [ x C ′ y C ′ 1 ] , D ′ = [ x D ′ y D ′ 1 ] \begin{gathered} \mathbf{A'} = \begin{bmatrix} x_A' \\ y_A' \\ 1 \end{bmatrix}, \quad \mathbf{B'} = \begin{bmatrix} x_B' \\ y_B' \\ 1 \end{bmatrix}, \quad \mathbf{C'} = \begin{bmatrix} x_C' \\ y_C' \\ 1 \end{bmatrix}, \quad \mathbf{D'} = \begin{bmatrix} x_D' \\ y_D' \\ 1 \end{bmatrix} \end{gathered} A= xAyA1 ,B= xByB1 ,C= xCyC1 ,D= xDyD1
透视变换的目标是找到一个3x3的矩阵H,使得:
A ′ = H ⋅ A , B ′ = H ⋅ B , C ′ = H ⋅ C , D ′ = H ⋅ D \begin{gathered} \mathbf{A'} = H \cdot \mathbf{A}, \quad \mathbf{B'} = H \cdot \mathbf{B}, \quad \mathbf{C'} = H \cdot \mathbf{C}, \quad \mathbf{D'} = H \cdot \mathbf{D} \end{gathered} A=HA,B=HB,C=HC,D=HD
展开上述等式,可以得到以下形式:
[ x A ′ y A ′ 1 ] = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] [ x A y A 1 ] \begin{gathered} \begin{bmatrix} x_A' \\ y_A' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_A \\ y_A \\ 1 \end{bmatrix} \end{gathered} xAyA1 = h11h21h31h12h22h32h13h23h33 xAyA1
[ x B ′ y B ′ 1 ] = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] [ x B y B 1 ] \begin{gathered} \begin{bmatrix} x_B' \\ y_B' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_B \\ y_B \\ 1 \end{bmatrix} \end{gathered} xByB1 = h11h21h31h12h22h32h13h23h33 xByB1
[ x C ′ y C ′ 1 ] = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] [ x C y C 1 ] \begin{gathered} \begin{bmatrix} x_C' \\ y_C' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_C \\ y_C \\ 1 \end{bmatrix} \end{gathered} xCyC1 = h11h21h31h12h22h32h13h23h33 xCyC1
[ x D ′ y D ′ 1 ] = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] [ x D y D 1 ] \begin{gathered} \begin{bmatrix} x_D' \\ y_D' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_D \\ y_D \\ 1 \end{bmatrix} \end{gathered} xDyD1 = h11h21h31h12h22h32h13h23h33 xDyD1
通过这些等式,我们可以得到透视变换矩阵H的形式:
H = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] \begin{gathered} H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \end{gathered} H= h11h21h31h12h22h32h13h23h33
为了求解矩阵H,我们需要至少四对点的对应关系。然后,可以使用线性方程求解技术,例如最小二乘法,来求解矩阵H的值。

透视变换在计算机视觉和图像处理中有广泛的应用。它可以用于纠正图像的透视畸变,如校正斜视图像、纠正摄像头畸变等。它还可以应用于图像拼接、目标检测和跟踪、虚拟现实等领域。

透视变换的意义在于可以改变图像的视角和形状,使得图像在新的视平面上更符合特定需求。它可以提供更好的图像展示效果、改善图像质量,并为后续的图像处理任务提供更准确的输入。

一些常见的使用场景包括:

  1. 图像矫正:纠正斜视图像、校正摄像头畸变等。
  2. 图像拼接:将多张图像拼接成全景图像。
  3. 虚拟现实:生成虚拟场景,将虚拟物体与实际场景进行融合。
  4. 目标检测和跟踪:根据目标在图像中的投影变换来跟踪目标。
  5. 图像处理:应用各种几何变换、形状变换和视角变换等。

总之,透视变换是一种强大的图像处理技术,可以对图像进行透视变换,改变视角和形状,广泛应用于计算机视觉、图像处理和图形学领域。

代码实现过程如下所示:

import cv2
import numpy as np
import matplotlib.pyplot as plt

# class Trans:
# 	def __init__(self,x,y,n):
# 		self.x=x
# 		self.y=y
# 		self.n=n
#
# 	def Trs(self):
# 		r,theta=cv2.cartToPolar(x,y,angleInDegrees=True)
# 		xr,yr=cv2.polarToCart(r,theta,angleInDegrees=1)
# 		print(xr,yr)
#
# 		plt.figure(figsize=(9, 5))
# 		plt.subplot(121), plt.title("Cartesian coordinate"), plt.plot(x, y, 'o')
# 		for i, txt in enumerate(n):
# 			plt.annotate(txt, (x[i], y[i]))
# 		plt.subplot(122), plt.title("Polar coordinate"), plt.plot(r, theta, 'o')
# 		for i, txt in enumerate(n):
# 			plt.annotate(txt, (r[i], theta[i]))
# 		plt.show()
#
#
# x = np.float32([0, 1, 2, 0, 1, 2, 0, 1, 2]) - 1
# y = np.float32([0, 0, 0, 1, 1, 1, 2, 2, 2]) - 1
# n = np.arange(9)
# to=Trans(x,y,n)
# to.Trs()

class Trans:
	def __init__(self,image_path):
		self.image_path=image_path

	def Trs(self):
		img=cv2.imread(self.image_path)

		if img is None:
			print('Unable to load image!')
		else:
			h,w=img.shape[:2]
			cx,cy=int(w/2),int(h/2)
			maxR=max(cx,cy)

			imgPolar = cv2.linearPolar(img, (cx, cy), maxR, cv2.INTER_LINEAR)
			imgPR = cv2.rotate(imgPolar, cv2.ROTATE_90_COUNTERCLOCKWISE)

			self.show_image(img,imgPR)

	def show_image(self,img,imgPR):
		plt.figure(figsize=(10, 6))
		plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.title("Original"), plt.axis('off')
		plt.subplot(122), plt.imshow(cv2.cvtColor(imgPR, cv2.COLOR_BGR2RGB)), plt.title("PolarTrans"), plt.axis('off')
		plt.show()

imgfile="Images/Atest1.jpg"
to=Trans(imgfile)
to.Trs()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Make_magic

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值