图像的反色变换涉及到图像的像素值矩阵的变换。假设原始图像为
I
I
I,其对应的像素值矩阵为
M
I
M_I
MI,则反色变换可以表示为:
M
out
=
L
max
−
M
I
M_{\text{out}} = L_{\text{max}} - M_I
Mout=Lmax−MI
其中,
L
max
L_{\text{max}}
Lmax 是亮度的最大值,
M
out
M_{\text{out}}
Mout 是输出图像的像素值矩阵。
反色变换的作用是将图像中每个像素的亮度值取反,即将亮部变暗,暗部变亮,从而改变图像的外观和视觉效果。它可以增强图像的对比度,使细节更加突出,并且产生独特的艺术效果。
从数学矩阵的角度来看,反色变换可以被看作是一个元素级的矩阵操作。将原始图像的像素值矩阵
M
I
M_I
MI 中的每个元素都与
L
max
L_{\text{max}}
Lmax 相减,得到输出图像的像素值矩阵
M
out
M_{\text{out}}
Mout。这个操作可以通过对每个像素值进行简单的减法运算来实现。
在应用场景上,图像反色变换常用于图像处理、计算机视觉和计算机图形学中。它可以用于图像增强,使图像更具有视觉冲击力和辨识度;在图像处理算法中,通过反色变换可以改变图像的亮度分布,从而影响算法的结果;在艺术设计和视觉效果中,反色变换可以创造独特的图像风格和艺术效果。
总而言之,图像反色变换是通过对图像的像素值矩阵进行元素级操作,将每个像素的亮度值取反,从而改变图像的外观和对比度。它在图像处理、计算机视觉和计算机图形学中有广泛的应用,并能产生独特的艺术效果。
具体代码实现如下所示:
import cv2
import matplotlib.pyplot as plt
import numpy as np
class ImageInv:
def __init__(self, input_path):
self.input_path = input_path
def imginv(self):
# 读取图像
img = cv2.imread(self.input_path, flags=1)
if img is None:
print('Unable to load image!')
else:
# 转换为灰度图像
imggray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
h, w = img.shape[:2]
# 创建空白图像
ImgInv = np.empty((w, h), np.uint8)
# 对每个像素点进行像素值取反
for i in range(h):
for j in range(w):
ImgInv[i][j] = 255 - imggray[i][j]
# 显示图像
self.show_img(img, imggray, ImgInv)
def show_img(self, img, imggray, ImgInv):
# 创建一个大小为10x6的图像窗口,显示三个子图
plt.figure(figsize=(10, 6))
# 第一个子图:原始RGB图像
plt.subplot(131),plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)),plt.title('imgRGB'),plt.axis('off')
# 第二个子图:灰度图像
plt.subplot(132),plt.imshow(imggray, cmap='gray'),plt.title('imgGray'),plt.axis('off')
# 第三个子图:像素值取反的图像
plt.subplot(133),plt.imshow(ImgInv, cmap='gray'),plt.title('imgInv'),plt.axis('off')
# 显示图像窗口
plt.show()
if __name__ == '__main__':
# 图像文件路径
imgfile = "./Images/lena.jpg"
# 创建ImageInv对象并调用imginv方法处理图像
img = ImageInv(imgfile)
img.imginv()