排序的相关知识点总结

1、概念

1.1排序

   排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

1.2稳定性

   两个相等的数据,如果经过排序后,排序算法能保证其相对位置不发生变化,则称该算法是具备稳定性的排序算法。(!!!常见的排序中具备稳定性的
有:插入排序、冒泡排序和归并排序。)

在这里插入图片描述

2、七大基于比较的排序

在这里插入图片描述

2.1插入排序

2.1.1直接插入排序

2.1.1.1直接插入排序-原理
	整个区间被分为
		1. 有序区间
		2. 无序区间
	每次选择无序区间的第一个元素,在有序区间内选择合适的位置插入,直到无序区间为空为止。
2.1.1.2直接插入排序-实现
	public static void insertSort(int[] array) {
        //区间:[0,i)
        //无序区间:[i,array.length)
        for (int i = 1; i < array.length; i++) {
            int tmp = array[i];
            int j = i - 1;
            while (j >= 0) {
                if (array[j] > tmp) {
                    array[j + 1] = array[j--];
                } else break;
            }
            array[j + 1] = tmp;
        }
	}
2.1.1.3直接插入排序-性能分析

在这里插入图片描述

!!!稳定性:稳定
!!!插入排序,初始数据越接近有序,时间效率越高

2.1.2希尔排序

2.1.2.1希尔排序-原理
	希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成gap个组,所有距离为gap的记录分在同一组内,并对每一
组内的记录进行排序。重复上述分组和排序的工作。当到达gap=1时,所有记录在统一组内排好序。
	1. 希尔排序是对直接插入排序的优化。
	2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。
2.1.2.2希尔排序-实现
   public static void shellSort(int[] array) {
        int gap = array.length / 2 + 1;
        while (gap > 1) {
            insertSortGap(array, gap);
            gap = gap / 3 + 1;
        }
        insertSortGap(array, 1);
    }

    /**
     * 本质是一个直接插入排序
     *
     * @param array 待排序数据序列
     */

    public static void insertSortGap(int[] array, int gap) {
        for (int i = gap; i < array.length; i++) {
            int tmp = array[i];
            int j = i - gap;
            while (j >= 0) {
                if (array[j] > tmp) {
                    array[j + gap] = array[j];
                    j -= gap;
                } else break;
            }
            array[j + gap] = tmp;
        }
    }

2.1.2.3希尔排序-性能分析

在这里插入图片描述

!!!稳定性:不稳定

2.2选择排序

2.2.1直接选择排序

2.2.1.1直接选择排序-原理
	每一次从无序区间选出最大(或最小)的一个元素,存放在无序区间的最后(或最前),直到全部待排序的数据元素排完 。
2.2.1.2直接选择排序-实现
	    public static void selectSort(int[] array) {
        // 无序区间: [0, i)
        // 有序区间: [i,array.length)
        for (int i = 0; i < array.length - 1; i++) {
            int min = i;
            for (int j = i + 1; j < array.length; j++) {
                if (array[j] < array[min]) {
                    min = j;
                }
            }
            if (min != i) {
                int tmp = array[min];
                array[min] = array[i];
                array[i] = tmp;
            }
        }
    }
2.2.1.3直接选择排序-性能分析

在这里插入图片描述
!!!稳定性:不稳定

2.2.2堆排序

2.2.2.1堆排序-原理
	基本原理也是选择排序,只是不再使用遍历的方式查找无序区间的最大的数,而是通过堆来选择无序区间的最大的数。

!!!注意: 排升序要建大堆,排降序要建小堆

2.2.2.2堆排序-实现
      public static void heapSort(int[] array) {
        createMaxHeap(array);
        for (int i = array.length - 1; i > 0; i--) {
            //交换前
            //无序区间:[0,i]
            //有序区间:[i+1,array.length - 1]
            swap(array, i, 0);
            //交换后
            //无序区间:[0,i-1]
            //有序区间:[i,array.length - 1]
            shiftDown(array, 0, i);
        }

    }

    public static void createMaxHeap(int[] array) {
        int parent = (array.length - 2) / 2;
        while (parent >= 0) {
            shiftDown(array, parent, array.length);
            parent--;
        }
    }

    public static void shiftDown(int[] array, int parent, int size) {
        int child = 2 * parent + 1;
        while (child < size) {
            if (child + 1 < size && array[child] < array[child + 1]) {
                child++;
            }
            if (array[child] > array[parent]) {
                swap(array, child, parent);
                parent = child;
                child = 2 * parent + 1;
            } else break;
        }
    }

    public static void swap(int[] array, int i, int j) {
        int tmp = array[i];
        array[i] = array[j];
        array[j] = tmp;
    }

2.2.2.3堆排序-性能分析

在这里插入图片描述
!!!稳定性:不稳定

2.3交换排序

2.3.1冒泡排序

2.3.1.1冒泡排序-原理
	在无序区间,通过相邻数的比较,将最大的数冒泡到无序区间的最后,持续这个过程,直到数组整体有序。
2.3.1.2冒泡排序-实现
    public static void bubbleSort(int[] array) {
        for (int i = 1; i < array.length; i++) {
            boolean flag = true;
            for (int j = 0; j < array.length - i; j++) {
                // 相等不交换,保证稳定性
                if (array[j] > array[j + 1]) {
                    swap(array, j, j + 1);
                    flag = false;
                }
            }
            if (flag) {
                break;
            }
        }
    }
2.3.1.3冒泡排序-性能分析

在这里插入图片描述

!!!稳定性:稳定

2.3.2快速排序

2.3.2.1快速排序-原理
1. 从待排序区间选择一个数,作为基准值(pivot);
2. Partition: 遍历整个待排序区间,将比基准值小的(可以包含相等的)放到基准值的左边,将比基准值大的(可以包含相等的)放到基准值的右边;
3. 采用分治思想,对左右两个小区间按照同样的方式处理,直到小区间的长度 == 1,代表已经有序,或者小区间的长度 == 0,代表没有数据。
2.3.2.2快速排序-实现
2.3.2.2.1快速排序-实现-递归
    public static void quickSort(int[] array) {
        quick(array, 0, array.length - 1);
    }

    public static void quick(int[] array, int start, int end) {
        if (start >= end) {
            return;
        }
        int pivot = partition(array, start, end);
        quick(array, start, pivot - 1);
        quick(array, pivot + 1, end);

    }

    public static int partition(int[] array, int left, int right) {
        int tmp = array[left];
        while (left < right) {
            while (array[right] >= tmp && right > left) {//不能取array[right]>tmp&&right>left------->死循环
                right--;
            }

            array[left] = array[right];
            while (array[left] <= tmp && right > left) {
                left++;
            }

            array[right] = array[left];
        }
        array[left] = tmp;
        return left;
    }
2.3.2.2.2快速排序-实现-非递归
  	public static void quickSort2(int[] array) {
        Stack<Integer> stack = new Stack<>();
        int left = 0;
        int right = array.length - 1;
        int pivot;
        stack.push(left);
        stack.push(right);
        while (!stack.empty()) {
            right = stack.pop();
            left = stack.pop();
            pivot = partition(array, left, right);
            if (left + 1 < pivot) {
                stack.push(left);
                stack.push(pivot - 1);
            }
            if (pivot + 1 < right) {
                stack.push(pivot + 1);
                stack.push(right);
            }
        }

    }
2.3.2.3快速排序-性能分析

在这里插入图片描述
!!!稳定性:不稳定

2.3.2.4快速排序-基准值的选择
1. 选择边上(左或者右)。
2. 随机选择。
3. 几数取中(例如三数取中):array[left], array[mid], array[right] 大小是中间的为基准值。

2.4归并排序

2.4.1归并排序

2.4.1.1归并排序-原理
	归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

在这里插入图片描述

2.4.1.2归并排序-实现
2.4.1.2.1归并排序-实现-递归
	        public static void mergeSort(int[] array) {
        mergeSortInternal(array, 0, array.length);
    }

    public static void mergeSortInternal(int[] array, int low, int high) {
        if (low + 1 == high) {
            return;
        }
        int mid = (low + high) / 2;
        //左边
        mergeSortInternal(array, low, mid);
        //右边
        mergeSortInternal(array, mid, high);
        //归并
        merge(array, low, mid, high);
    }

    public static void merge(int[] array, int low, int mid, int high) {
        int i = low;
        int j = mid;
        int k = 0;
        int[] ret = new int[high - low];
        while (i < mid && j < high) {
            if (array[i] < array[j]) {
                ret[k++] = array[i++];

            } else {
                ret[k++] = array[j++];
            }
        }
        while (i < mid) {
            ret[k++] = array[i++];
        }
        while (j < high) {
            ret[k++] = array[j++];
        }
        //拷贝ret数组的元素到array数组当中
        for (i = 0; i < ret.length; i++) {
            array[low + i] = ret[i];
        }
    }
2.4.1.2.2归并排序-实现-非递归
    public static void mergeSort2(int[] array) {
        //gap为有序的子数组长度
        int gap=1;
        while (gap<array.length){
            for (int i = 0; i < array.length; i+=gap*2) {
                int left=i;
                int right=left+gap*2;
                if(right>array.length){
                    right=array.length;
                }
                int mid=left+gap;
                if(mid>array.length){
                    continue;//如果mid大于数组长度,说明该归并不需要排序了
                }
                merge(array,left,mid,right);
            }
            gap*=2;
        }

    }
2.4.1.3归并排序-性能分析

在这里插入图片描述
!!!稳定性:稳定

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zzz_yf993

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值