在讨论随机过程的平稳性时,提到的“联合分布函数在任意时间平移后保持不变”指的是严格平稳(Strict-Sense Stationary, SSS随机过程的一个关键属性。我们可以通过以下步骤逐步解释这个概念。
1. 联合分布函数
首先,随机过程 X ( t ) X(t) X(t) 在多个时间点 t 1 , t 2 , … , t n t_1, t_2, \dots, t_n t1,t2,…,tn 的行为可以通过这些时间点对应的随机变量 X ( t 1 ) , X ( t 2 ) , … , X ( t n ) X(t_1), X(t_2), \dots, X(t_n) X(t1),X(t2),…,X(tn) 的联合分布来描述。
例如,如果你有一个随机过程 X ( t ) X(t) X(t),你可以在不同的时间点 t 1 t_1 t1 和 t 2 t_2 t2 观测它的值 X ( t 1 ) X(t_1) X(t1) 和 X ( t 2 ) X(t_2) X(t2)。那么,这两个随机变量的联合分布函数可以描述它们在这些时间点上共同的概率行为。
联合分布函数可以表示为:
F X ( t 1 ) , X ( t 2 ) ( x 1 , x 2 ) = P ( X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 ) F_{X(t_1), X(t_2)}(x_1, x_2) = P(X(t_1) \leq x_1, X(t_2) \leq x_2) FX(t1),X(t2)(x1,x2)=P(X(t1)≤x1,X(t2)≤x2)
它描述的是在时间点 t 1 t_1 t1 和 t 2 t_2 t2,随机过程取值 X ( t 1 ) ≤ x 1 X(t_1) \leq x_1 X(t1)≤x1 和 X ( t 2 ) ≤ x 2 X(t_2) \leq x_2 X(t2)≤x2 的联合概率。
注意:
联合分布函数通常是通过概率累积分布来描述的,重点在于同时满足两个或多个随机变量的特定条件的概率。它与“卷积”没有直接关系,因为卷积主要用于处理两个独立随机变量的和的概率分布,而不是联合概率分布。
-
联合分布描述了多个随机变量同时发生时的概率,它反映的是随机变量在同一时刻或不同时间点的相关性。联合分布的计算不依赖于卷积,而是依赖于对联合概率的描述和计算。
-
卷积用于计算两个独立随机变量的和的分布。这在处理随机变量的加和时非常有用,特别是在信号处理、概率论中。当我们想要知道 Z = X + Y Z = X + Y Z=X+Y 的概率密度时,卷积是一种常见的求解方法。
让我们通过一个具体的例子来计算两个随机变量的联合分布函数。假设我们有一个简单的随机过程 X ( t ) X(t) X(t),并且我们只考虑两个时间点 t 1 t_1 t1 和 t 2 t_2 t2 的随机变量 X ( t 1 ) X(t_1) X(t1) 和 X ( t 2 ) X(t_2) X(t2)。为了简化,我们假设 X ( t 1 ) X(t_1) X(t1) 和 X ( t 2 ) X(t_2) X(t2) 服从二维正态分布。
例子:二维正态分布
假设 X ( t 1 ) X(t_1) X(t1) 和 X ( t 2 ) X(t_2) X(t2) 是两个服从均值为 0 的二维正态分布的随机变量,其协方差矩阵为:
Σ = ( σ 1 2 ρ σ 1 σ 2 ρ σ 1 σ 2 σ 2 2 ) \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} Σ=(σ12ρσ1σ2ρσ1σ2σ22)
其中:
- σ 1 2 \sigma_1^2 σ12 是 X ( t 1 ) X(t_1) X(t1) 的方差,
- σ 2 2 \sigma_2^2 σ22 是 X ( t 2 ) X(t_2) X(t2) 的方差,
- ρ \rho ρ 是