在本节中,我们将讨论信息论中的两个基本度量指标:熵(Entropy) 和互信息(Mutual Information, MI)。这些度量指标都与字母表(alphabet)这一概念相关,字母表可以理解为由符号组成的集合。与字母表类似的术语还包括码字(codewords),可以类比为符号,而码书(codebook) 则类似于字母表的概念。字母表中的符号是由信息源产生的,信息源的一个典型模型是离散无记忆源(Discrete Memoryless Sources, DMS)。
1. 离散无记忆源(DMS)
**离散无记忆源(DMS)**是信息论中一种常见的抽象模型。它具有以下特点:
- 字母表 J = { s 1 , s 2 , ⋯ , s n } J = \{s_1, s_2, \cdots , s_n\} J={ s1,s2,⋯,sn},每个 s k ∈ J s_k \in J sk∈J 都是源发出的符号。
- 在离散无记忆源中,符号是独立生成的,也就是说,符号之间没有依赖关系,之前发出的符号不会影响之后发出的符号。
- 每个符号 s k s_k sk 出现的概率为 P ( S = s k ) = p k P(S = s_k) = p_k P<