论信息论中的两个基本度量指标:熵(Entropy) 和互信息(Mutual Information, MI)【*】

在本节中,我们将讨论信息论中的两个基本度量指标:熵(Entropy)互信息(Mutual Information, MI)。这些度量指标都与字母表(alphabet)这一概念相关,字母表可以理解为由符号组成的集合。与字母表类似的术语还包括码字(codewords),可以类比为符号,而码书(codebook) 则类似于字母表的概念。字母表中的符号是由信息源产生的,信息源的一个典型模型是离散无记忆源(Discrete Memoryless Sources, DMS)

1. 离散无记忆源(DMS)

**离散无记忆源(DMS)**是信息论中一种常见的抽象模型。它具有以下特点:

  • 字母表 J = { s 1 , s 2 , ⋯   , s n } J = \{s_1, s_2, \cdots , s_n\} J={ s1,s2,,sn},每个 s k ∈ J s_k \in J skJ 都是源发出的符号。
  • 在离散无记忆源中,符号是独立生成的,也就是说,符号之间没有依赖关系,之前发出的符号不会影响之后发出的符号。
  • 每个符号 s k s_k sk 出现的概率为 P ( S = s k ) = p k P(S = s_k) = p_k P<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值