Cohen’s Kappa *

Cohen’s Kappa 是一种用于衡量分类器一致性和可靠性的重要统计指标,特别适用于两个评估者(或观察者)对同一组样本进行分类的情况。它可以判断两位评估者在多大程度上达成了一致,同时考虑到纯粹随机一致的可能性。

1. 定义与公式

Cohen’s Kappa ( κ \kappa κ) 是在观察到的一致性和预期的一致性之间进行衡量。其计算公式为:
κ = P o − P e 1 − P e \kappa = \frac{P_o - P_e}{1 - P_e} κ=1PePoPe
其中:

  • P o P_o Po 是观察到的比例一致性,即评估者在所有样本上达成一致的比例。
  • P e P_e Pe 是预期的随机一致性比例,即在假设评估者独立且随机进行分类的情况下,他们达成一致的概率。

2. 如何计算

假设我们有一个2x2的混淆矩阵,行和列分别代表两个评估者的分类结果:

评估者B = Positive评估者B = Negative
评估者A = Positive a a a (True Positive) b b b (False Negative)
评估者A = Negative c c c (False Positive) d d d (True Negative)
  • P o = a + d a + b + c + d P_o = \frac{a + d}{a + b + c + d} Po=a+b+c+da+d 表示两位评估者在正类和负类上达成一致的比例。
  • P e = ( a + b ) ( a + c ) + ( c + d ) ( b + d ) ( a + b + c + d ) 2 P_e = \frac{(a + b)(a + c) + (c + d)(b + d)}{(a + b + c + d)^2} Pe=(a+b+c+d)2(a+b)(a+c)+(c+d)(b+d) 表示在随机分配下,两个评估者达成一致的概率。

3. Kappa值的解释

Cohen’s Kappa 的值范围为 -1 到 1:

  • κ = 1 \kappa = 1 κ=1:完全一致,表示两个评估者的分类结果完全相同。
  • κ = 0 \kappa = 0 κ=0:一致性与随机猜测相同,即评估者之间没有比随机更好的一致性。
  • κ < 0 \kappa < 0 κ<0:一致性低于随机猜测,表明评估者的分类结果有明显的分歧。

通常,Kappa值的解释标准如下:

  • 0.01 - 0.20:轻微一致性
  • 0.21 - 0.40:一般一致性
  • 0.41 - 0.60:中度一致性
  • 0.61 - 0.80:良好一致性
  • 0.81 - 1.00:非常好的一致性

4. Kappa的应用场景

  • 医学诊断:例如,用于衡量医生在诊断相同病例时的一致性。
  • 机器学习分类模型评估:在多分类任务中,Cohen’s Kappa 被用于评估两个模型或同一个模型在不同时间点的分类一致性。
  • 心理学和社会科学:在调查或问卷中,不同调查员对相同被试的评分一致性可以通过Kappa来评估。

5. 举个例子

假设有两个评估者(A和B)对100个样本进行分类,其中评估结果如下:

  • 两位评估者都认为50个样本为正类(True Positive)。
  • 两位评估者都认为30个样本为负类(True Negative)。
  • 评估者A认为10个样本为正类,但评估者B认为它们为负类(False Positive)。
  • 评估者A认为10个样本为负类,但评估者B认为它们为正类(False Negative)。

计算得到:
P o = 50 + 30 100 = 0.8 P_o = \frac{50 + 30}{100} = 0.8 Po=10050+30=0.8
P e = ( 60 × 60 ) + ( 40 × 40 ) 10 0 2 = 0.52 P_e = \frac{(60 \times 60) + (40 \times 40)}{100^2} = 0.52 Pe=1002(60×60)+(40×40)=0.52

因此,Cohen’s Kappa 为:
κ = 0.8 − 0.52 1 − 0.52 = 0.28 0.48 ≈ 0.583 \kappa = \frac{0.8 - 0.52}{1 - 0.52} = \frac{0.28}{0.48} \approx 0.583 κ=10.520.80.52=0.480.280.583

这个Kappa值表示两位评估者之间有中度一致性

6. Cohen’s Kappa的优缺点

  • 优点:能够考虑到随机一致性的可能性,因此比简单的准确率更准确。
  • 缺点:当分类类别非常不平衡时,Kappa值可能偏低,即使评估者在多数类别上已经高度一致。

Cohen’s Kappa 是一个有用的指标,可以帮助我们更客观地评估两位或两个系统在相同任务上的一致性,尤其是在分类或评估任务中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值