将未来的输入值设为零,是一种对系统进行“零填充”处理的手段。在实际的信号处理中,很多情况下我们确实可以通过将未来的输入值设为零来简化分析或者方便计算。然而,即使这样做,这种系统在本质上仍然不是一个因果系统。
1. 因果性的数学定义
因果性要求系统的输出仅依赖于当前和过去的输入。也就是说,系统不能对未来的输入作出反应。在数学上,这意味着对于系统的冲激响应 h ( n ) h(n) h(n),当 n < 0 n < 0 n<0 时,必须有 h ( n ) = 0 h(n) = 0 h(n)=0。换句话说:
- 冲激响应在负时间段为零是确保因果性的关键。
如果冲激响应 h ( n ) h(n) h(n) 在负时间时不为零,那么无论输入信号是否被零填充,该系统在数学上都是非因果的。因为系统的输出依然可能受到未来输入信号的影响,而因果系统的定义是严格的:它在任何情况下都不能依赖于未来的输入。
2. 零填充的本质
通过将未来的输入 x ( n ) x(n) x(n) 在 n > 0 n > 0 n>0 时设为零(即零填充),可以使卷积的计算变得简单,因为未来的值都等于零,卷积求和中的某些项消失。但这只是一种“处理输入”的手段,不改变系统本身的行为。
举个例子,假设我们有如下的输入信号 x ( n ) x(n) x(n):
- x ( 0 ) = 1 x(0) = 1 x(0)=1
- x ( n ) = 0 对于所有的 n > 0 x(n) = 0 \quad \text{对于所有的 } n > 0 x(n)=0对于所有的 n>0
假设冲激响应
h
(
n
)
h(n)
h(n) 是一个 sinc 函数,其在负时间段有非零值,即:
h
(
n
)
=
sin
(
ω
c
n
)
π
n
,
n
<
0
h(n) = \frac{\sin(\omega_c n)}{\pi n}, \quad n < 0
h(n)=πnsin(ωcn),n<0
在进行卷积时:
y
(
n
)
=
∑
k
=
−
∞
∞
x
(
k
)
h
(
n
−
k
)
y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n - k)
y(n)=k=−∞∑∞x(k)h(n−k)
对于某个时刻
n
=
0
n = 0
n=0 来说,我们有:
y
(
0
)
=
∑
k
=
−
∞
∞
x
(
k
)
h
(
0
−
k
)
y(0) = \sum_{k=-\infty}^{\infty} x(k) h(0 - k)
y(0)=k=−∞∑∞x(k)h(0−k)
尽管我们将
x
(
n
)
x(n)
x(n) 在
n
>
0
n > 0
n>0 的时候设为零,但由于
h
(
n
)
h(n)
h(n) 在
n
<
0
n < 0
n<0 时仍然有非零值,所以系统的卷积计算中实际上仍然考虑了这些负时间的响应。这意味着,冲激响应的负时间部分可能涉及未来的输入。因此,这个系统从数学上来讲仍然是非因果的,因为它有可能对那些未到来的输入值产生反应。
3. 因果系统与信号处理的物理含义
因果系统的一个很重要的物理含义是,系统只能对已经发生的事情做出反应。也就是说,系统不能预见未来,而只能根据当前和过去的输入值作出反应。如果冲激响应在负时间段(即 n < 0 n < 0 n<0)不为零,那么系统在某些时刻的输出就需要依赖未来的输入信息,这在物理上是不可实现的,或者说违反了物理现实中因果关系的规则。
所以,即使你将输入信号在未来的时刻设为零,这只是消除了某些卷积项,但并不能改变系统本身的因果性特性。如果我们想让系统因果,必须保证它的冲激响应在 n < 0 n < 0 n<0 的时候为零。
4. 如何使理想滤波器因果
对于理想的低通滤波器,其冲激响应是 sinc 函数,这个冲激响应在正负两侧都延伸,且在负时间段不为零。因此,为了使这个滤波器变为因果的,通常的做法是将冲激响应延迟,以确保它在负时间索引上为零。例如:
- 我们将冲激响应整体向右平移
T
T
T 个时间单位:
h causal ( n ) = h ( n − T ) h_{\text{causal}}(n) = h(n - T) hcausal(n)=h(n−T)
这样,延迟后的 h causal ( n ) h_{\text{causal}}(n) hcausal(n) 在 n < T n < T n<T 的时候等于零,从而使系统变为因果系统。
这样的操作确保了冲激响应只存在于当前及未来的时间段,而不会涉及到负时间的部分,因此可以保证系统的因果性。
总结
- 将输入信号在未来的时刻设为零(即零填充)是一种常见的简化手段,但并不能改变系统的因果性特性。
- 因果系统的本质要求冲激响应 h ( n ) h(n) h(n) 在 n < 0 n < 0 n<0 时必须为零,以保证系统的输出不依赖于未来的输入。
- 理想低通滤波器的冲激响应(sinc 函数)在 n < 0 n < 0 n<0 时具有非零值,导致它是一个非因果系统。为了使其因果,可以将冲激响应延迟,以确保负时间部分为零。