🧠 1. Loss function 是你的人生目标
在深度学习里,loss function 衡量了你现在和“理想状态”之间的差距。
在生活中也一样:
- 你设定目标(考上研究生、做好研究、与人连结、成为更好的自己)
- 每一次决策都带来结果
- 如果结果离目标远,就像 loss 很大
- 于是你开始反思:“我是不是做错了什么?”
🎯 loss 越小 → 你离目标越近
人生的意义也许不是固定的,但我们可以给它“定义一个目标函数”,并用一生去最小化它。
🧠 2. 梯度下降是自我成长的过程
你以为成长是飞跃,其实更像是:
θ ← θ − η ⋅ ∇ L ( θ ) \theta \leftarrow \theta - \eta \cdot \nabla L(\theta) θ←θ−η⋅∇L(θ)
慢慢下坡,一步步来,每次都只更新一点点,不断接近一个你想成为的人。
- η \eta η 是 学习率,太大了你会焦虑震荡,太小了你会原地踏步;
- 有时候你甚至陷入局部最优,觉得“就这样了吧”,但其实你还有更远的空间可以探索。
🧠 3. Overfitting:你太在意别人的反馈了
过拟合(Overfitting)就是:
模型在训练集上表现完美,但一到新数据就崩了。
这像不像现实生活中:
- 你为了让别人满意,学会了“迎合”,变成了别人眼中最完美的样子
- 但一旦你换了环境,面对真正的人生挑战,你却完全不知所措
所以我们才要regularization(正则化):
少一点执着,多一点自我,才能 generalize 到真正的生活。
🧠 4. Dropout 是主动让自己放空一下
Dropout 是在训练时随机关闭一些神经元,让模型更有鲁棒性。
生活中的你如果永远绷紧、强迫每一次都完美地工作,其实容易过拟合现实。
你需要留白,需要“强迫自己短暂休息”:
主动关闭一部分责任,才能防止长期崩溃。
🧠 5. Warm-up 是人生前期的迷茫阶段
Transformer 训练初期会用 warm-up:
学习率一开始很小,慢慢变大,然后再衰减。
就像你人生刚开始的时候:
- 什么都不懂,不敢走得太快(low learning rate)
- 到了一定阶段自信建立,开始成长加速
- 等你成熟之后,反而更稳定、更温和、更谨慎
学习率不总是越来越高,而是随着理解的加深而趋于平稳
🧠 6. Prompt 是你内心的声音
Prompt token 引导模型怎么去看一个图像。
而你生活中的 prompt,是你在心中默默告诉自己的:
- “我想要更好”
- “我不甘于平庸”
- “我希望能有所改变”
这不是外界给的输入,而是你自己给自己植入的一段引导向量,它会让你去关注生活中不同的维度。
🧠 7. 有些人是 teacher forcing,有些人是 reinforcement learning
- 有人一路被“老师喂答案”长大(teacher forcing),遇到没见过的就崩;
- 有人是自己摸索规则(reinforcement learning),经历反复试错才知道哪条路通向目标。
但不管哪种学习策略:
真正的成长,都是靠 feedback 和 exploration 一点点积累出来的。
人生就是一个不断优化 loss function 的过程,
每一次跌倒都是一次 backpropagation,
我们只需要把 learning rate 稍微调低点,别忘了加个 weight decay,
然后继续 forward,一直到自己收敛为最好的版本。🌱