动态情感识别模型详细解析

1. 基本概念

情感的时序性质

  • 持续性:情感会持续一段时间
  • 多模态表现:
    • 面部表情变化
    • 声音特征变化
    • 身体动作变化

时序信息聚合方法演进

  1. 传统方法:

    • 函数统计聚合
    • 时间窗口特征计算
  2. 深度学习方法:

    • 循环神经网络(RNN)
    • Transformer架构
    • 发展趋势:从RNN向Transformer迁移

2. Transformer基动态模型架构

主要组件

  1. 静态特征提取器:

    • 预训练处理
    • AffWild2数据集微调
    • 特征维度:256维/帧
    • 权重冻结操作
  2. 时序处理部分:

    • 三个连续Transformer编码器层
    • 注意力头数量:8
    • Dropout率:0.1
    • 位置编码应用
  3. 决策层:

    • 分类任务:多类别输出
    • 回归任务:Tanh激活函数

3. 统计基模型架构(替代方案)

KELM模型设计

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值