1. 基本概念
情感的时序性质
- 持续性:情感会持续一段时间
- 多模态表现:
- 面部表情变化
- 声音特征变化
- 身体动作变化
时序信息聚合方法演进
-
传统方法:
- 函数统计聚合
- 时间窗口特征计算
-
深度学习方法:
- 循环神经网络(RNN)
- Transformer架构
- 发展趋势:从RNN向Transformer迁移
2. Transformer基动态模型架构
主要组件
-
静态特征提取器:
- 预训练处理
- AffWild2数据集微调
- 特征维度:256维/帧
- 权重冻结操作
-
时序处理部分:
- 三个连续Transformer编码器层
- 注意力头数量:8
- Dropout率:0.1
- 位置编码应用
-
决策层:
- 分类任务:多类别输出
- 回归任务:Tanh激活函数