马尔可夫链(Markov Chain)

在这里插入图片描述


一、马尔可夫链的定义与特点

定义
  • 马尔可夫链是一个由状态(state)组成的序列,状态之间的转移依赖于当前状态,但不依赖于之前的状态历史。
  • 换句话说,当前状态的信息足以决定下一个状态的分布,这就是所谓的马尔可夫性(Markov property)

数学表达式为:
P ( q i ∣ q i − 1 , q i − 2 , … , q 1 ) = P ( q i ∣ q i − 1 ) P(q_i | q_{i-1}, q_{i-2}, \dots, q_1) = P(q_i | q_{i-1}) P(qiqi1,qi2,,q1)=P(qiqi1)
这种假设称为一阶马尔可夫假设(First-order Markov assumption)


特点
  1. 状态集合(States, N N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值