1. 马尔科夫链的定义
马尔科夫链是一种序列模型,其中状态是完全可见的,没有“隐藏”部分。它的转移是根据当前状态决定的,只关心当前状态转移到下一个状态的概率。其核心是 状态转移概率矩阵 A A A。
- 核心特点:只关注状态之间的转移,不涉及观察值(观测值)的生成。
- 数学定义:如果在时间 t t t 的状态为 X t X_t Xt,那么 X t X_t Xt 的分布只取决于 X t − 1 X_{t-1} Xt−1,即满足马尔科夫性:
P ( X t ∣ X t − 1 , X t − 2 , … , X 1 ) = P ( X t ∣ X t − 1 ) . P(X_t | X_{t-1}, X_{t-2}, \dots, X_1) = P(X_t | X_{t-1}). P(Xt∣X<