马尔科夫链(Markov Chain)没有发射概率 B

1. 马尔科夫链的定义

马尔科夫链是一种序列模型,其中状态是完全可见的,没有“隐藏”部分。它的转移是根据当前状态决定的,只关心当前状态转移到下一个状态的概率。其核心是 状态转移概率矩阵 A A A

  • 核心特点:只关注状态之间的转移,不涉及观察值(观测值)的生成。
  • 数学定义:如果在时间 t t t 的状态为 X t X_t Xt,那么 X t X_t Xt 的分布只取决于 X t − 1 X_{t-1} Xt1,即满足马尔科夫性:
    P ( X t ∣ X t − 1 , X t − 2 , … , X 1 ) = P ( X t ∣ X t − 1 ) . P(X_t | X_{t-1}, X_{t-2}, \dots, X_1) = P(X_t | X_{t-1}). P(XtX<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值