背景:观测概率的更新公式 b j ( v k ) b_j(v_k) bj(vk)
公式 b j ( v k ) b_j(v_k) bj(vk) 的定义:
b j ( v k ) = 状态 j 生成符号 v k 的期望次数 状态 j 的总期望次数 b_j(v_k) = \frac{\text{状态 $j$ 生成符号 $v_k$ 的期望次数}}{\text{状态 $j$ 的总期望次数}} bj(vk)=状态 j 的总期望次数状态 j 生成符号 vk 的期望次数
直观理解:
- 分子:统计状态 j j j 生成观测符号 v k v_k vk 的期望次数。
- 分母:统计状态 j j j 在整个观测序列中出现的总期望次数。
最终,更新后的 b j ( v k ) b_j(v_k) bj(vk) 是一个归一化的概率分布。
公式分解
1. 什么是 γ t ( j ) \gamma_t(j) γt(j)?
γ t ( j ) = P ( q t = j ∣ O , λ ) \gamma_t(j) = P(q_t = j | O, \lambda) γt(j)=P(qt=j∣O,λ)
- γ t ( j ) \gamma_t(j) γt(