EM算法重新估计(Re-estimate)隐马尔可夫模型(HMM)的观测概率

背景:观测概率的更新公式 b j ( v k ) b_j(v_k) bj(vk)

公式 b j ( v k ) b_j(v_k) bj(vk) 的定义:
b j ( v k ) = 状态  j  生成符号  v k  的期望次数 状态  j  的总期望次数 b_j(v_k) = \frac{\text{状态 $j$ 生成符号 $v_k$ 的期望次数}}{\text{状态 $j$ 的总期望次数}} bj(vk)=状态 j 的总期望次数状态 j 生成符号 vk 的期望次数

直观理解
  1. 分子:统计状态 j j j 生成观测符号 v k v_k vk 的期望次数。
  2. 分母:统计状态 j j j 在整个观测序列中出现的总期望次数。

最终,更新后的 b j ( v k ) b_j(v_k) bj(vk) 是一个归一化的概率分布。


公式分解

1. 什么是 γ t ( j ) \gamma_t(j) γt(j)

γ t ( j ) = P ( q t = j ∣ O , λ ) \gamma_t(j) = P(q_t = j | O, \lambda) γt(j)=P(qt=jO,λ)

  • γ t ( j ) \gamma_t(j) γt(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值