完整梳理一下施加电压后液滴张力变化、接触角变化和各力之间的相互关系

一、液滴没有通电时的力学平衡

在没有电压时,液滴的受力和平衡由三种界面张力(interfacial tension) 控制:

界面张力记号作用方向
液-气界面 γ L G \gamma_{LG} γLG拉着液滴往外张开(球形趋势)
固-气界面 γ S G \gamma_{SG} γSG吸引气体,相当于固体的“干燥倾向”
液-固界面 γ S L \gamma_{SL} γSL液体与固体之间的附着力

Young 方程描述这三种张力在三相点的平衡:

γ S G = γ S L + γ L G cos ⁡ θ \gamma_{SG} = \gamma_{SL} + \gamma_{LG} \cos \theta γSG=γSL+γLGcosθ

这是水滴“静止不动”的状态。
重力确实存在,但对微小液滴影响极小,主要由界面张力决定液滴形状


二、通电后发生什么?

通电后出现了一个额外向下的电场力(静电引力)

这不是传统意义上的“外力”,而是从能量角度看,是在固-液界面多加了一项“电能”

这个电能导致原来的张力平衡式发生变化:


🔹 1. 表面张力值本身有没有变?

  • γ L G \gamma_{LG} γLG:液体和空气的表面张力,不变
  • γ S G \gamma_{SG} γSG:固体和空气的界面张力,不变
  • γ S L \gamma_{SL} γSL:液体和固体之间的界面张力,有效值变小了

为什么?

因为电场在固-液界面中引入了一个电容能量项(可以理解为电场帮助了液体“贴”上表面):

γ S L → γ S L eff = γ S L − 1 2 ε 0 ε r V 2 d \gamma_{SL} \rightarrow \gamma_{SL}^{\text{eff}} = \gamma_{SL} - \frac{1}{2} \varepsilon_0 \varepsilon_r \frac{V^2}{d} γSLγSLeff=γSL21ε0εrdV2

于是 Young 方程变成:

cos ⁡ ( θ V ) = cos ⁡ ( θ 0 ) + ε 0 ε r V 2 2 γ L G d \cos(\theta_V) = \cos(\theta_0) + \frac{\varepsilon_0 \varepsilon_r V^2}{2 \gamma_{LG} d} cos(θV)=cos(θ0)+2γLGdε0εrV2


🔹 2. 接触角为什么变小?

因为分母 γ L G \gamma_{LG} γLG 没变,而分子那项是正数 → cos ⁡ ( θ V ) \cos(\theta_V) cos(θV) 增加 → θ V \theta_V θV 变小

这是系统为了达到能量最小的状态,自发调整液滴形状来“用更多面积换来更多电容能量”,本质是能量交换,而不是张力强度变了。


三、张力变大了吗?

液体的张力 γ L G \gamma_{LG} γLG 没有变大
液滴之所以变扁,是因为电场力“拉住了底部”,张力无法回到原来的平衡态
最终液滴调整形状,以达到最小总能量(张力 + 电能)
所以不能说“张力变大了导致角度变小”,而是电能变大导致液滴角度变小


最好记住的因果关系:

电场力拉动液滴 → 界面能量变化 → 液滴形状变化 → 接触角变小(看起来更亲水)
而不是:
张力变大 → 接触角变小(❌这个方向是错的)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值