文章目录
一、简单排序
1.1 comparable接口
Java提供了一个接口Comparable就是用来定义排序规则的,在这里我们以案例的形式对Comparable接口做一个简单的回顾
需求:
1.定义一个学生类Student,具有年龄age和姓名username两个属性,并通过Comparable接口提供比较规则;
2.定义测试类Test,在测试类Test中定义测试方法Comparable getMax(Comparable c1,Comparable c2)完成测试
学生类:
package sort;
/**
* @author wxs_blue
* @create 2022-07-19 22:58
*/
public class Student implements Comparable<Student> {
private String username;
private int age;
public Student(String username, int age) {
this.username = username;
this.age = age;
}
public Student() {
}
public String getUsername() {
return username;
}
public void setUsername(String username) {
this.username = username;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public int compareTo(Student o) {
return this.getAge() - o.getAge();
}
@Override
public String toString() {
return "Student{" +
"username='" + username + '\'' +
", age=" + age +
'}';
}
}
测试方法:
public static void main(String[] args) {
Student s1 = new Student("zhangsan", 18);
Student s2 = new Student("wangwu", 20);
Comparable max = getMax(s1,s2);
System.out.println(max);
}
public static Comparable getMax(Comparable c1,Comparable c2){
int cmp = c1.compareTo(c2);
if (cmp>=0){
return c1;
}else {
return c2;
}
}
结果:
1.2 冒泡排序
排序原理:
- 比较相邻的元素。如果前一个元素比后一个元素大,就交换这两个元素的位置。
- 对每一对相邻元素做同样的工作,从开始第一对元素到结尾的最后一对元素。最终最后位置的元素就是最大值。
案例需求:
排序前:{4,5,6,3,2,1}
排序后:{1,2,3,4,5,6}
冒泡排序:
package sort;
/**
* @author wxs_blue
* @create 2022-07-19 23:07
*/
public class Bubble {
/*
对数组中的元素进行排序
*/
public static void sort(Comparable[] a){
for (int i = a.length-1; i >=0 ; i--) {
for (int j = 0; j < i; j++) {
if(greater(a[j],a[j+1])){
exch(a,j,j+1);
}
}
}
}
/*
比较大小
*/
public static boolean greater(Comparable v,Comparable w){
return v.compareTo(w)>0;
}
/*
交换位置
*/
public static void exch(Comparable[] a,int i, int j){
Comparable t = a[i];
a[i] = a[j];
a[j] = t;
}
}
测试方法:
@Test
public void testBubble(){
Integer[] a = {4,5,6,3,2,1};
Bubble.sort(a);
System.out.println(Arrays.toString(a));
}
结果:
按照大O推导法则,保留函数中的最高阶项那么最终冒泡排序的时间复杂度为O(N^2)
1.3 选择排序
排序原理:
- 每一次遍历的过程中,都假定第一个索引处的元素是最小值,和其他索引处的值依次进行比较,如果当前索引处的值大于其他某个索引处的值,则假定其他某个索引出的值为最小值,最后可以找到最小值所在的索引
- 交换第一个索引处和最小值所在的索引处的值
案例需求:
排序前:{4,6,8,7,9,2,10,1}
排序后:{1,2,4,5,7,8,9,10}
选择排序:
package sort;
/**
* @author wxs_blue
* @create 2022-07-19 23:37
*/
public class Selection {
/*
对数组进行排序
*/
public static void sort(Comparable[] a){
for (int i = 0; i <= a.length-2; i++) {
//假设本次遍历,最小值所在的索引是i
int minIndex = i;
for (int j = i+1; j < a.length; j++) {
if (greater(a[minIndex],a[j])){
//交换最小值所在的索引
minIndex = j;
}
//交换i索引处和minIndex索引处的值
exch(a,i,minIndex);
}
}
}
/*
比较大小
*/
public static boolean greater(Comparable v,Comparable w){
return v.compareTo(w)>0;
}
/*
交换位置
*/
public static void exch(Comparable[] a,int i, int j){
Comparable t = a[i];
a[i] = a[j];
a[j] = t;
}
}
测试类:
@Test
public void testSelection(){
Integer[] a = {4,6,8,7,9,2,10,1};
Selection.sort(a);
System.out.println(Arrays.toString(a));
}
结果:
根据大O推导法则,保留最高阶项,去除常数因子,时间复杂度为O(N^2);
1.4 插入排序
排序原理:
- 把所有的元素分为两组,已经排序的和未排序的;
- 找到未排序的组中的第一个元素,向已经排序的组中进行插入;
- 倒叙遍历已经排序的元素,依次和待插入的元素进行比较,直到找到一个元素小于等于待插入元素,那么就把待插入元素放到这个位置,其他的元素向后移动一位;
案例需求:
排序前:{4,3,2,10,12,1,5,6}
排序后:{1,2,3,4,5,6,10,12}
插入排序:
package sort;
/**
* @author wxs_blue
* @create 2022-07-19 23:53
*/
public class Insertion {
/*
对数组进行排序
*/
public static void sort(Comparable[] a){
for (int i = 1; i < a.length; i++) {
//当前元素为a[i],依次和i前面的元素比较,找到一个小于等于a[i]的元素
for (int j = i; j > 0 ; j--) {
if (greater(a[j-1],a[j])){
//交换元素
exch(a,j-1,j);
} else {
//找到了该元素,结束
break;
}
}
}
}
/*
比较大小
*/
public static boolean greater(Comparable v,Comparable w){
return v.compareTo(w)>0;
}
/*
交换位置
*/
public static void exch(Comparable[] a,int i, int j){
Comparable t = a[i];
a[i] = a[j];
a[j] = t;
}
}
测试方法:
@Test
public void testInsertion(){
Integer[] a = {4,3,2,10,12,1,5,6};
Insertion.sort(a);
System.out.println(Arrays.toString(a));
}
结果:
按照大O推导法则,保留函数中的最高阶项那么最终插入排序的时间复杂度为O(N^2).
二、高级排序
之前我们学习过基础排序,包括冒泡排序,选择排序还有插入排序,并且对他们在最坏情况下的时间复杂度做了分析,发现都是O(N^2),而平方阶通过我们之前学习算法分析我们知道,随着输入规模的增大,时间成本将急剧上升,所以这些基本排序方法不能处理更大规模的问题,接下来我们学习一些高级的排序算法,争取降低算法的时间复杂度最高阶次幂。
2.1 希尔排序
希尔排序是插入排序的一种,又称“缩小增量排序”,是插入排序算法的一种更高效的改进版本。
前面学习插入排序的时候,我们会发现一个很不友好的事儿,如果已排序的分组元素为{2,5,7,9,10},未排序的分组元素为{1,8},那么下一个待插入元素为1,我们需要拿着1从后往前,依次和10,9,7,5,2进行交换位置,才能完成真正的插入,每次交换只能和相邻的元素交换位置。那如果我们要提高效率,直观的想法就是一次交换,能把1放到更前面的位置,比如一次交换就能把1插到2和5之间,这样一次交换1就向前走了5个位置,可以减少交换的次数,这样的需求如何实现呢?接下来我们来看看希尔排序的原理。
排序原理:
- 选定一个增长量h,按照增长量h作为数据分组的依据,对数据进行分组;
- 对分好组的每一组数据完成插入排序;
- 减小增长量,最小减为1,重复第二步操作。
案例需求:
排序前:{9,1,2,5,7,4,8,6,3,5}
排序后:{1,2,3,4,5,5,6,7,8,9}
希尔排序:
package sort;
/**
* @author wxs_blue
* @create 2022-07-21 15:44
*/
public class Shell {
/*
对数组进行排序
*/
public static void sort(Comparable[] a){
int N = a.length;
//确定增量值
int h = 1;
while (h<N/2){
h = h*2+1;
}
//当增量h<1,排序结束
while (h>=1){
//找到待插入元素
for (int i = h; i < N; i++) {
//a[i]就是待插入的元素
//把a[i]插入到a[i-h],a[i-2h],a[i-3h]...序列中
for (int j = i; j >=h ; j-=h) {
//a[j]就是待插入元素,依次和a[j-h],a[j-2h],a[j-3h]进行比较,如果a[j]小,那么交换位置,如果不小于,a[j]大,则插入完成。
if (greater(a[j-h],a[j])){
exch(a,j,j-h);
}else {
break;
}
}
}
h = h/2;
}
}
/*
比较大小
*/
public static boolean greater(Comparable v,Comparable w){
return v.compareTo(w)>0;
}
/*
交换位置
*/
public static void exch(Comparable[] a,int i, int j){
Comparable t = a[i];
a[i] = a[j];
a[j] = t;
}
}
测试方法:
@Test
public void Shell(){
Integer[] a = {9,1,2,5,7,4,8,6,3,5};
Shell.sort(a);
System.out.println(Arrays.toString(a));
}
结果:
在希尔排序中,增长量h并没有固定的规则,有很多论文研究了各种不同的递增序列,但都无法证明某个序列是最好的,这里就不做分析
希尔排序和插入排序性能比较
我们可以使用事后分析法对希尔排序和插入排序做性能比较。
在资料的测试数据文件夹下有一个reverse_shell_insertion.txt文件,里面存放的是从100000到1的逆向数据,我们可以根据这个批量数据完成测试。测试的思想:在执行排序前前记录一个时间,在排序完成后记录一个时间,两个时间的时间差就是排序的耗时。
测试代码:
import sort.Insertion;
import sort.Shell;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
public class SortCompare {
public static void main(String[] args) throws Exception{
ArrayList<Integer> list = new ArrayList<>();
//读取reverse_arr.txt文件
BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("reverse_shell_insertion.txt")));
String line=null;
while((line=reader.readLine())!=null){
//把每一个数字存入到集合中
list.add(Integer.valueOf(line));
}
reader.close();
//把集合转换成数组
Integer[] arr = new Integer[list.size()];
list.toArray(arr);
testInsertion(arr);//使用插入排序耗时:20859
testShell(arr);//使用希尔排序耗时:31
}
public static void testInsertion(Integer[] arr){
//使用插入排序完成测试
long start = System.currentTimeMillis();
Insertion.sort(arr);
long end= System.currentTimeMillis();
System.out.println("使用插入排序耗时:"+(end-start));
}
public static void testShell(Integer[] arr){
//使用希尔排序完成测试
long start = System.currentTimeMillis();
Shell.sort(arr);
long end = System.currentTimeMillis();
System.out.println("使用希尔排序耗时:"+(end-start));
}
}
结果:
通过测试发现,在处理大批量数据时,希尔排序的性能确实高于插入排序。
2.2 归并排序
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
排序原理:
- 尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是1为止。
- 将相邻的两个子组进行合并成一个有序的大组;
- 不断的重复步骤2,直到最终只有一个组为止。
案例需求:
排序前:{8,4,5,7,1,3,6,2}
排序后:{1,2,3,4,5,6,7,8}
归并排序:
package sort;
/**
* @author wxs_blue
* @create 2022-07-21 16:54
*/
public class Merge {
//归并所需要的辅助数组
private static Comparable[] assist;
/*
对整个数组进行排序
*/
public static void sort(Comparable[] a){
assist = new Comparable[a.length];
int lower = 0;
int high = a.length-1;
sort(a,lower,high);
}
/*
对数组从lower到high之间的元素进行排序
*/
private static void sort(Comparable[] a, int lower, int high){
//安全性检验
if (high<=lower){
return;
}
//防止数据过大,超出整形范围
int mid = lower + (high - lower) / 2;
//对lower到mid之间的元素分组
sort(a,lower,mid);
//对mid到high之间的元素分组
sort(a,mid+1,high);
//对lower到mid这组数据 和 mid到high这组数据 进行归并 并 排序
merge(a,lower,mid,high);
}
private static void merge(Comparable[] a, int lower, int mid, int high){
//定义3个指针
int i = lower;
int p1 = lower;
int p2 = mid + 1;
//比较左边小组和右边小组中的元素大小,哪个小,就把哪个数据填充到assist数组中
while (p1<=mid&&p2<=high){
if (less(a[p1],a[p2])){
assist[i++] = a[p1++];
} else {
assist[i++] = a[p2++];
}
}
//上面的循环结束后,如果退出循环的条件是p1<=mid,则证明左边小组中的数据已经归并完毕,如果退出循环的条件是p2<=hi,则证明右边小组的数据已经填充完毕;
//所以需要把未填充完毕的数据继续填充到assist中,//下面两个循环,只会执行其中的一个
while (p1<=mid){
assist[i++] = a[p1++];
}
while (p2<=high){
assist[i++] = a[p2++];
}
//到现在为止,assist数组中,从lo到hi的元素是有序的,再把数据拷贝到a数组中对应的索引处
for (int index = lower; index <= high; index++) {
a[index] = assist[index];
}
}
/*
比较v元素是否小于w元素
*/
private static boolean less(Comparable v, Comparable w) {
return v.compareTo(w) < 0;
}
/*
数组元素i和j交换位置
*/
private static void exch(Comparable[] a, int i, int j) {
Comparable t = a[i];
a[i] = a[j];
a[j] = t;
}
}
测试方法:
@Test
public void testMerge(){
Integer[] arr = {8, 4, 5, 7, 1, 3, 6, 2};
Merge.sort(arr);
System.out.println(Arrays.toString(arr));
}
结果:
根据大O推导法则,忽略底数,最终归并排序的时间复杂度为O(nlogn);
归并排序的缺点:
- 需要申请额外的数组空间,导致空间复杂度提升,是典型的以空间换时间的操作
归并排序与希尔排序性能测试
在资料的测试数据文件夹下有一个reverse_shell_insertion.txt文件,里面存放的是从100000到1的逆向数据,我们可以根据这个批量数据完成测试。测试的思想:在执行排序前前记录一个时间,在排序完成后记录一个时间,两个时间的时间差就是排序的耗时。
测试代码:
import sort.Merge;
import sort.Shell;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
public class SortCompare {
public static void main(String[] args) throws Exception{
ArrayList<Integer> list = new ArrayList<>();
//读取a.txt文件
BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("reverse_merge_shell.txt")));
String line=null;
while((line=reader.readLine())!=null){
//把每一个数字存入到集合中
list.add(Integer.valueOf(line));
}
reader.close();
//把集合转换成数组
Integer[] arr = new Integer[list.size()];
list.toArray(arr);
testMerge(arr);//使用归并排序耗时:1200
testShell(arr);//使用希尔排序耗时:1277
}
public static void testMerge(Integer[] arr){
//使用插入排序完成测试
long start = System.currentTimeMillis();
Merge.sort(arr);
long end= System.currentTimeMillis();
System.out.println("使用归并排序耗时:"+(end-start));
}
public static void testShell(Integer[] arr){
//使用希尔排序完成测试
long start = System.currentTimeMillis();
Shell.sort(arr);
long end = System.currentTimeMillis();
System.out.println("使用希尔排序耗时:"+(end-start));
}
}
结果:
通过测试,发现希尔排序和归并排序在处理大批量数据时差别不是很大。
2.3 快速排序
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
排序原理:
- 首先设定一个分界值,通过该分界值将数组分成左右两部分;
- 将大于或等于分界值的数据放到到数组右边,小于分界值的数据放到数组的左边。此时左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值;
- 然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
- 重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了。
案例需求:
排序前:{6, 1, 2, 7, 9, 3, 4, 5, 8}
排序后:{1, 2, 3, 4, 5, 6, 7, 8, 9}
快速排序:
package sort;
/**
* @author wxs_blue
* @create 2022-07-21 22:41
*/
public class Quick {
/*
对整个数组进行排序
*/
public static void sort(Comparable[] a){
int lower = 0;
int high = a.length-1;
sort(a,lower,high);
}
/*
对lower到high之间的元素进行排序
*/
private static void sort(Comparable[] a,int lower,int high){
if(high<=lower){
return;
}
int partition = partition(a,lower,high);
//对左边分组中的元素进行排序
sort(a,lower,partition-1);
//对右边分组中的元素进行排序
sort(a,partition+1,high);
}
public static int partition(Comparable[]a,int lower,int high){
//把最左边的元素当做基准值
Comparable key = a[lower];
//定义两测指针
int left = lower;
int right = high+1;
//进行切分
while (true){
//先从右往左扫描,找到一个比基准值小的元素
while (less(key,a[--right])){
if (right==lower){
break;
}
}
//再从左往右扫描,找一个比基准值大的元素
while (less(a[++left],key)){
if (left==high){
break;
}
}
//扫描完了所有元素,结束循环
if(left>=right){
break;
} else {
//交换left和right索引处的元素
exch(a,left,right);
}
}
//交换最后rigth索引处和基准值所在的索引处的值
exch(a,lower,right);
//right就是切分的界限
return right;
}
/*
比较v元素是否小于w元素
*/
private static boolean less(Comparable v, Comparable w) {
return v.compareTo(w) < 0;
}
/*
数组元素i和j交换位置
*/
private static void exch(Comparable[] a, int i, int j) {
Comparable t = a[i];
a[i] = a[j];
a[j] = t;
}
}
测试方法:
@Test
public void testQuick(){
Integer[] arr = {6, 1, 2, 7, 9, 3, 4, 5, 8};
Quick.sort(arr);
System.out.println(Arrays.toString(arr));
}
结果:
最优情况下快速排序的时间复杂度为O(nlogn)
最坏情况下,快速排序的时间复杂度为O(n^2)
快速排序和归并排序的区别:
- 快速排序是另外一种分治的排序算法,它将一个数组分成两个子数组,将两部分独立的排序。快速排序和归并排序是互补的:归并排序将数组分成两个子数组分别排序,并将有序的子数组归并从而将整个数组排序,而快速排序的方式则是当两个数组都有序时,整个数组自然就有序了。在归并排序中,一个数组被等分为两半,归并调用发生在处理整个数组之前,在快速排序中,切分数组的位置取决于数组的内容,递归调用发生在处理整个数组之后。
三、排序的稳定性
稳定性的定义:
- 数组arr中有若干元素,其中A元素和B元素相等,并且A元素在B元素前面,如果使用某种排序算法排序后,能够保证A元素依然在B元素的前面,可以说这个该算法是稳定的。
稳定性的意义: - 如果一组数据只需要一次排序,则稳定性一般是没有意义的,如果一组数据需要多次排序,稳定性是有意义的。
- 例如要排序的内容是一组商品对象,第一次排序按照价格由低到高排序,第二次排序按照销量由高到低排序,如果第二次排序使用稳定性算法,就可以使得相同销量的对象依旧保持着价格高低的顺序展现,只有销量不同的对象才需要重新排序。这样既可以保持第一次排序的原有意义,而且可以减少系统开销。
常见排序算法的稳定性:
- 冒泡排序:
只有当arr[i]>arr[i+1]的时候,才会交换元素的位置,而相等的时候并不交换位置,所以冒泡排序是一种稳定排序算法。 - 选择排序:
选择排序是给每个位置选择当前元素最小的,例如有数据{5(1),8 ,5(2), 2, 9 },第一遍选择到的最小元素为2,所以5(1)会和2进行交换位置,此时5(1)到了5(2)后面,破坏了稳定性,所以选择排序是一种不稳定的排序算法。 - 插入排序:
比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么把要插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。 - 希尔排序:
希尔排序是按照不同步长对元素进行插入排序 ,虽然一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序是不稳定的。 - 归并排序:
归并排序在归并的过程中,只有arr[i]<arr[i+1]的时候才会交换位置,如果两个元素相等则不会交换位置,所以它并不会破坏稳定性,归并排序是稳定的。 - 快速排序:
快速排序需要一个基准值,在基准值的右侧找一个比基准值小的元素,在基准值的左侧找一个比基准值大的元素,然后交换这两个元素,此时会破坏稳定性,所以快速排序是一种不稳定的算法。