Java数据结构与算法(排序)

一、简单排序

1.1 comparable接口

Java提供了一个接口Comparable就是用来定义排序规则的,在这里我们以案例的形式对Comparable接口做一个简单的回顾
需求:
1.定义一个学生类Student,具有年龄age和姓名username两个属性,并通过Comparable接口提供比较规则;
2.定义测试类Test,在测试类Test中定义测试方法Comparable getMax(Comparable c1,Comparable c2)完成测试

学生类:

package sort;

/**
 * @author wxs_blue
 * @create 2022-07-19 22:58
 */
public class Student implements Comparable<Student> {
    private String username;
    private int age;

    public Student(String username, int age) {
        this.username = username;
        this.age = age;
    }

    public Student() {
    }

    public String getUsername() {
        return username;
    }

    public void setUsername(String username) {
        this.username = username;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    @Override
    public int compareTo(Student o) {
        return this.getAge() - o.getAge();
    }

    @Override
    public String toString() {
        return "Student{" +
                "username='" + username + '\'' +
                ", age=" + age +
                '}';
    }
}

测试方法:

public static void main(String[] args) {
        Student s1 = new Student("zhangsan", 18);
        Student s2 = new Student("wangwu", 20);

        Comparable max = getMax(s1,s2);
        System.out.println(max);
    }

    public static Comparable getMax(Comparable c1,Comparable c2){
        int cmp = c1.compareTo(c2);
        if (cmp>=0){
            return c1;
        }else {
            return c2;
        }
    }

结果:
在这里插入图片描述

1.2 冒泡排序

排序原理:

  1. 比较相邻的元素。如果前一个元素比后一个元素大,就交换这两个元素的位置。
  2. 对每一对相邻元素做同样的工作,从开始第一对元素到结尾的最后一对元素。最终最后位置的元素就是最大值。
    在这里插入图片描述

案例需求:
排序前:{4,5,6,3,2,1}
排序后:{1,2,3,4,5,6}

冒泡排序:

package sort;

/**
 * @author wxs_blue
 * @create 2022-07-19 23:07
 */
public class Bubble {
    /*
    对数组中的元素进行排序
     */
    public static void sort(Comparable[] a){
        for (int i = a.length-1; i >=0 ; i--) {
            for (int j = 0; j < i; j++) {
                if(greater(a[j],a[j+1])){
                    exch(a,j,j+1);
                }
            }
        }
    }
    /*
    比较大小
     */
    public static boolean greater(Comparable v,Comparable w){
        return v.compareTo(w)>0;
    }

    /*
    交换位置
     */
    public static void exch(Comparable[] a,int i, int j){
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}

测试方法:

@Test
    public void testBubble(){
        Integer[] a = {4,5,6,3,2,1};
        Bubble.sort(a);
        System.out.println(Arrays.toString(a));

    }

结果:
在这里插入图片描述

按照大O推导法则,保留函数中的最高阶项那么最终冒泡排序的时间复杂度为O(N^2)

1.3 选择排序

排序原理:

  1. 每一次遍历的过程中,都假定第一个索引处的元素是最小值,和其他索引处的值依次进行比较,如果当前索引处的值大于其他某个索引处的值,则假定其他某个索引出的值为最小值,最后可以找到最小值所在的索引
  2. 交换第一个索引处和最小值所在的索引处的值
    在这里插入图片描述

案例需求:
排序前:{4,6,8,7,9,2,10,1}
排序后:{1,2,4,5,7,8,9,10}

选择排序:

package sort;

/**
 * @author wxs_blue
 * @create 2022-07-19 23:37
 */
public class Selection {

    /*
    对数组进行排序
     */

    public static void sort(Comparable[] a){

        for (int i = 0; i <= a.length-2; i++) {
            //假设本次遍历,最小值所在的索引是i
            int minIndex = i;
            for (int j = i+1; j < a.length; j++) {
                if (greater(a[minIndex],a[j])){
                    //交换最小值所在的索引
                    minIndex = j;
                }
                //交换i索引处和minIndex索引处的值
                exch(a,i,minIndex);
            }
        }
    }

    /*
    比较大小
     */

    public static boolean greater(Comparable v,Comparable w){
        return v.compareTo(w)>0;
    }

    /*
    交换位置
     */

    public static void exch(Comparable[] a,int i, int j){
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}

测试类:

@Test
    public void testSelection(){
        Integer[] a = {4,6,8,7,9,2,10,1};
        Selection.sort(a);
        System.out.println(Arrays.toString(a));

    }

结果:
在这里插入图片描述

根据大O推导法则,保留最高阶项,去除常数因子,时间复杂度为O(N^2);

1.4 插入排序

排序原理:

  1. 把所有的元素分为两组,已经排序的和未排序的;
  2. 找到未排序的组中的第一个元素,向已经排序的组中进行插入;
  3. 倒叙遍历已经排序的元素,依次和待插入的元素进行比较,直到找到一个元素小于等于待插入元素,那么就把待插入元素放到这个位置,其他的元素向后移动一位;
    在这里插入图片描述

案例需求:
排序前:{4,3,2,10,12,1,5,6}
排序后:{1,2,3,4,5,6,10,12}

插入排序:

package sort;

/**
 * @author wxs_blue
 * @create 2022-07-19 23:53
 */
public class Insertion {
    /*
    对数组进行排序
     */
    public static void sort(Comparable[] a){

        for (int i = 1; i < a.length; i++) {

            //当前元素为a[i],依次和i前面的元素比较,找到一个小于等于a[i]的元素
            for (int j = i; j > 0 ; j--) {
                if (greater(a[j-1],a[j])){
                    //交换元素
                    exch(a,j-1,j);
                } else {
                    //找到了该元素,结束
                    break;
                }
            }

        }
    }

    /*
    比较大小
     */
    public static boolean greater(Comparable v,Comparable w){
        return v.compareTo(w)>0;
    }

    /*
    交换位置
     */
    public static void exch(Comparable[] a,int i, int j){
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}

测试方法:

@Test
    public void testInsertion(){
        Integer[] a = {4,3,2,10,12,1,5,6};
        Insertion.sort(a);
        System.out.println(Arrays.toString(a));

    }

结果:
在这里插入图片描述

按照大O推导法则,保留函数中的最高阶项那么最终插入排序的时间复杂度为O(N^2).

二、高级排序

之前我们学习过基础排序,包括冒泡排序,选择排序还有插入排序,并且对他们在最坏情况下的时间复杂度做了分析,发现都是O(N^2),而平方阶通过我们之前学习算法分析我们知道,随着输入规模的增大,时间成本将急剧上升,所以这些基本排序方法不能处理更大规模的问题,接下来我们学习一些高级的排序算法,争取降低算法的时间复杂度最高阶次幂。


2.1 希尔排序

希尔排序是插入排序的一种,又称“缩小增量排序”,是插入排序算法的一种更高效的改进版本。

前面学习插入排序的时候,我们会发现一个很不友好的事儿,如果已排序的分组元素为{2,5,7,9,10},未排序的分组元素为{1,8},那么下一个待插入元素为1,我们需要拿着1从后往前,依次和10,9,7,5,2进行交换位置,才能完成真正的插入,每次交换只能和相邻的元素交换位置。那如果我们要提高效率,直观的想法就是一次交换,能把1放到更前面的位置,比如一次交换就能把1插到2和5之间,这样一次交换1就向前走了5个位置,可以减少交换的次数,这样的需求如何实现呢?接下来我们来看看希尔排序的原理。

排序原理:

  1. 选定一个增长量h,按照增长量h作为数据分组的依据,对数据进行分组;
  2. 对分好组的每一组数据完成插入排序;
  3. 减小增长量,最小减为1,重复第二步操作。

案例需求:
排序前:{9,1,2,5,7,4,8,6,3,5}
排序后:{1,2,3,4,5,5,6,7,8,9}

希尔排序:

package sort;

/**
 * @author wxs_blue
 * @create 2022-07-21 15:44
 */
public class Shell {

    /*
    对数组进行排序
     */
    public static void sort(Comparable[] a){
        int N = a.length;
        //确定增量值
        int h = 1;
        while (h<N/2){
            h = h*2+1;
        }

        //当增量h<1,排序结束
        while (h>=1){
            //找到待插入元素
            for (int i = h; i < N; i++) {
                //a[i]就是待插入的元素
                //把a[i]插入到a[i-h],a[i-2h],a[i-3h]...序列中
                for (int j = i; j >=h ; j-=h) {
                    //a[j]就是待插入元素,依次和a[j-h],a[j-2h],a[j-3h]进行比较,如果a[j]小,那么交换位置,如果不小于,a[j]大,则插入完成。
                    if (greater(a[j-h],a[j])){
                        exch(a,j,j-h);
                    }else {
                        break;
                    }
                }
            }
            h = h/2;
        }
    }

     /*
    比较大小
     */

    public static boolean greater(Comparable v,Comparable w){
        return v.compareTo(w)>0;
    }

    /*
    交换位置
     */

    public static void exch(Comparable[] a,int i, int j){
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}

测试方法:

@Test
    public void Shell(){
        Integer[] a = {9,1,2,5,7,4,8,6,3,5};
        Shell.sort(a);
        System.out.println(Arrays.toString(a));

    }

结果:
在这里插入图片描述

在希尔排序中,增长量h并没有固定的规则,有很多论文研究了各种不同的递增序列,但都无法证明某个序列是最好的,这里就不做分析

希尔排序和插入排序性能比较

我们可以使用事后分析法对希尔排序和插入排序做性能比较。
在资料的测试数据文件夹下有一个reverse_shell_insertion.txt文件,里面存放的是从100000到1的逆向数据,我们可以根据这个批量数据完成测试。测试的思想:在执行排序前前记录一个时间,在排序完成后记录一个时间,两个时间的时间差就是排序的耗时。
在这里插入图片描述
测试代码:

import sort.Insertion;
import sort.Shell;

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;

public class SortCompare {
    public static void main(String[] args) throws Exception{
        ArrayList<Integer> list = new ArrayList<>();
        //读取reverse_arr.txt文件
        BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("reverse_shell_insertion.txt")));
        String line=null;
        while((line=reader.readLine())!=null){
            //把每一个数字存入到集合中
            list.add(Integer.valueOf(line));

        }

        reader.close();

        //把集合转换成数组
        Integer[] arr = new Integer[list.size()];


        list.toArray(arr);

        testInsertion(arr);//使用插入排序耗时:20859

        testShell(arr);//使用希尔排序耗时:31
    }


    public static void testInsertion(Integer[] arr){
        //使用插入排序完成测试
        long start = System.currentTimeMillis();
        Insertion.sort(arr);
        long end= System.currentTimeMillis();
        System.out.println("使用插入排序耗时:"+(end-start));
    }

    public static void testShell(Integer[] arr){
        //使用希尔排序完成测试
        long start = System.currentTimeMillis();
        Shell.sort(arr);
        long end = System.currentTimeMillis();
        System.out.println("使用希尔排序耗时:"+(end-start));
    }

}

结果:

在这里插入图片描述
在这里插入图片描述

通过测试发现,在处理大批量数据时,希尔排序的性能确实高于插入排序。

2.2 归并排序

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

排序原理:

  1. 尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是1为止。
  2. 将相邻的两个子组进行合并成一个有序的大组;
  3. 不断的重复步骤2,直到最终只有一个组为止。
    在这里插入图片描述
    案例需求:
    排序前:{8,4,5,7,1,3,6,2}
    排序后:{1,2,3,4,5,6,7,8}

归并排序:

package sort;

/**
 * @author wxs_blue
 * @create 2022-07-21 16:54
 */
public class Merge {
    //归并所需要的辅助数组
    private static Comparable[] assist;

    /*
    对整个数组进行排序
     */
    public static void sort(Comparable[] a){
        assist = new Comparable[a.length];
        int lower = 0;
        int high = a.length-1;
        sort(a,lower,high);
    }

    /*
    对数组从lower到high之间的元素进行排序
     */
    private static void sort(Comparable[] a, int lower, int high){
        //安全性检验
        if (high<=lower){
            return;
        }

        //防止数据过大,超出整形范围
        int mid = lower + (high - lower) / 2;

        //对lower到mid之间的元素分组
        sort(a,lower,mid);

        //对mid到high之间的元素分组
        sort(a,mid+1,high);

        //对lower到mid这组数据 和 mid到high这组数据 进行归并 并 排序
        merge(a,lower,mid,high);

    }

    private static void merge(Comparable[] a, int lower, int mid, int high){
        //定义3个指针
        int i = lower;
        int p1 = lower;
        int p2 = mid + 1;

        //比较左边小组和右边小组中的元素大小,哪个小,就把哪个数据填充到assist数组中
        while (p1<=mid&&p2<=high){
            if (less(a[p1],a[p2])){
                assist[i++] = a[p1++];
            } else {
                assist[i++] = a[p2++];
            }
        }

        //上面的循环结束后,如果退出循环的条件是p1<=mid,则证明左边小组中的数据已经归并完毕,如果退出循环的条件是p2<=hi,则证明右边小组的数据已经填充完毕;
        //所以需要把未填充完毕的数据继续填充到assist中,//下面两个循环,只会执行其中的一个
        while (p1<=mid){
            assist[i++] = a[p1++];
        }
        while (p2<=high){
            assist[i++] = a[p2++];
        }

        //到现在为止,assist数组中,从lo到hi的元素是有序的,再把数据拷贝到a数组中对应的索引处
        for (int index = lower; index <= high; index++) {
            a[index] = assist[index];
        }
    }

    /*
       比较v元素是否小于w元素
    */
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }

    /*
    数组元素i和j交换位置
     */
    private static void exch(Comparable[] a, int i, int j) {
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}

测试方法:

 @Test
    public void testMerge(){
        Integer[] arr = {8, 4, 5, 7, 1, 3, 6, 2};
        Merge.sort(arr);
        System.out.println(Arrays.toString(arr));
    }

结果:
在这里插入图片描述

根据大O推导法则,忽略底数,最终归并排序的时间复杂度为O(nlogn);

归并排序的缺点:

  • 需要申请额外的数组空间,导致空间复杂度提升,是典型的以空间换时间的操作

归并排序与希尔排序性能测试

在资料的测试数据文件夹下有一个reverse_shell_insertion.txt文件,里面存放的是从100000到1的逆向数据,我们可以根据这个批量数据完成测试。测试的思想:在执行排序前前记录一个时间,在排序完成后记录一个时间,两个时间的时间差就是排序的耗时。

测试代码:

import sort.Merge;
import sort.Shell;

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;

public class SortCompare {
    public static void main(String[] args) throws Exception{
        ArrayList<Integer> list = new ArrayList<>();
        //读取a.txt文件
        BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("reverse_merge_shell.txt")));
        String line=null;
        while((line=reader.readLine())!=null){
            //把每一个数字存入到集合中
            list.add(Integer.valueOf(line));
        }
        reader.close();
        //把集合转换成数组
        Integer[] arr = new Integer[list.size()];
        list.toArray(arr);

        testMerge(arr);//使用归并排序耗时:1200

        testShell(arr);//使用希尔排序耗时:1277

    }


    public static void testMerge(Integer[] arr){
        //使用插入排序完成测试
        long start = System.currentTimeMillis();
        Merge.sort(arr);
        long end= System.currentTimeMillis();
        System.out.println("使用归并排序耗时:"+(end-start));

    }


    public static void testShell(Integer[] arr){
        //使用希尔排序完成测试
        long start = System.currentTimeMillis();
        Shell.sort(arr);
        long end = System.currentTimeMillis();
        System.out.println("使用希尔排序耗时:"+(end-start));

    }

}

结果:
在这里插入图片描述

在这里插入图片描述

通过测试,发现希尔排序和归并排序在处理大批量数据时差别不是很大。

2.3 快速排序

快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

排序原理:

  1. 首先设定一个分界值,通过该分界值将数组分成左右两部分;
  2. 将大于或等于分界值的数据放到到数组右边,小于分界值的数据放到数组的左边。此时左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值;
  3. 然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
  4. 重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了。
    在这里插入图片描述
    案例需求:
    排序前:{6, 1, 2, 7, 9, 3, 4, 5, 8}
    排序后:{1, 2, 3, 4, 5, 6, 7, 8, 9}

快速排序:

package sort;

/**
 * @author wxs_blue
 * @create 2022-07-21 22:41
 */
public class Quick {

    /*
    对整个数组进行排序
     */
    public static void sort(Comparable[] a){
        int lower = 0;
        int high = a.length-1;
        sort(a,lower,high);
    }

    /*
    对lower到high之间的元素进行排序
     */
    private static void sort(Comparable[] a,int lower,int high){
        if(high<=lower){
            return;
        }

        int partition = partition(a,lower,high);

        //对左边分组中的元素进行排序
        sort(a,lower,partition-1);

        //对右边分组中的元素进行排序
        sort(a,partition+1,high);
    }

    public static int partition(Comparable[]a,int lower,int high){
        //把最左边的元素当做基准值
        Comparable key = a[lower];

        //定义两测指针
        int left = lower;
        int right = high+1;

        //进行切分
        while (true){

            //先从右往左扫描,找到一个比基准值小的元素
            while (less(key,a[--right])){
                if (right==lower){
                    break;
                }
            }

            //再从左往右扫描,找一个比基准值大的元素
            while (less(a[++left],key)){
                if (left==high){
                    break;
                }
            }

            //扫描完了所有元素,结束循环
            if(left>=right){
                break;
            } else {
                //交换left和right索引处的元素
                exch(a,left,right);
            }
        }
        //交换最后rigth索引处和基准值所在的索引处的值
        exch(a,lower,right);

        //right就是切分的界限
        return right;
    }

    /*
   比较v元素是否小于w元素
*/
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }

    /*
    数组元素i和j交换位置
     */
    private static void exch(Comparable[] a, int i, int j) {
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}

测试方法:

@Test
    public void testQuick(){
        Integer[] arr = {6, 1, 2, 7, 9, 3, 4, 5, 8};
        Quick.sort(arr);
        System.out.println(Arrays.toString(arr));
    }

结果:
在这里插入图片描述

最优情况下快速排序的时间复杂度为O(nlogn)
最坏情况下,快速排序的时间复杂度为O(n^2)

快速排序和归并排序的区别:

  • 快速排序是另外一种分治的排序算法,它将一个数组分成两个子数组,将两部分独立的排序。快速排序和归并排序是互补的:归并排序将数组分成两个子数组分别排序,并将有序的子数组归并从而将整个数组排序,而快速排序的方式则是当两个数组都有序时,整个数组自然就有序了。在归并排序中,一个数组被等分为两半,归并调用发生在处理整个数组之前,在快速排序中,切分数组的位置取决于数组的内容,递归调用发生在处理整个数组之后。

三、排序的稳定性

稳定性的定义:

  • 数组arr中有若干元素,其中A元素和B元素相等,并且A元素在B元素前面,如果使用某种排序算法排序后,能够保证A元素依然在B元素的前面,可以说这个该算法是稳定的。
    在这里插入图片描述
    稳定性的意义:
  • 如果一组数据只需要一次排序,则稳定性一般是没有意义的,如果一组数据需要多次排序,稳定性是有意义的。
  • 例如要排序的内容是一组商品对象,第一次排序按照价格由低到高排序,第二次排序按照销量由高到低排序,如果第二次排序使用稳定性算法,就可以使得相同销量的对象依旧保持着价格高低的顺序展现,只有销量不同的对象才需要重新排序。这样既可以保持第一次排序的原有意义,而且可以减少系统开销。

常见排序算法的稳定性:

  • 冒泡排序:
    只有当arr[i]>arr[i+1]的时候,才会交换元素的位置,而相等的时候并不交换位置,所以冒泡排序是一种稳定排序算法。
  • 选择排序:
    选择排序是给每个位置选择当前元素最小的,例如有数据{5(1),8 ,5(2), 2, 9 },第一遍选择到的最小元素为2,所以5(1)会和2进行交换位置,此时5(1)到了5(2)后面,破坏了稳定性,所以选择排序是一种不稳定的排序算法。
  • 插入排序:
    比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么把要插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。
  • 希尔排序:
    希尔排序是按照不同步长对元素进行插入排序 ,虽然一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序是不稳定的。
  • 归并排序:
    归并排序在归并的过程中,只有arr[i]<arr[i+1]的时候才会交换位置,如果两个元素相等则不会交换位置,所以它并不会破坏稳定性,归并排序是稳定的。
  • 快速排序:
    快速排序需要一个基准值,在基准值的右侧找一个比基准值小的元素,在基准值的左侧找一个比基准值大的元素,然后交换这两个元素,此时会破坏稳定性,所以快速排序是一种不稳定的算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陌上人如玉এ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值