树的基本概念定义和性质(附公式推导过程)

树的定义

树是n(n>=0)个节点的有限集。当n=0时,称为空树。在任意一颗非空树中应满足:

1)有且仅有一个特定的称为根的结点。

2)当n>1时,其余节点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每个集合本身又是一棵树,并且称为根的子树。

显然,树的定义是递归的,即在树的定义中又用到了其自身,树是一种递归的数据结构。树作为一种逻辑结构,同时也是一种分层结构,具有以下两个特点:

1)树的根结点没有前驱,除根节点外的所有结点有且只有一个前驱。

2)树中所有结点都可以有零个或多个后继。

树适合于表示具有层次结构的数据。树中的某个结点(除根节点外)最多只和上一层的一个结点(即其父结点)有直接关系,根节点没有直接上层结点,因此在n个结点的树中又n-1条边。而树中每个结点与下一层的零个或多个结点(即其子女结点)有直接关系。

基本术语

 1)考虑结点K。根A到结点K的唯一路径上的任意结点,称为结点K的祖先。如结点B是结点K的祖先,而结点K是结点B的子孙。路径上最接近结点K的结点E称为K的双亲,而K为结点E的孩子。根A是树中唯一没有双亲的结点在相同双亲的结点称为兄弟如结点K和结点L有相同的双亲E,即K和L是兄弟。

2)。树中一个结点的孩子个数称为该结点的度。比如结点B的度为2,树的度为3

            树中结点的最大度数称为树的度。

3)度大于0的结点称为分支结点(又称非终端结点)度为0(没有子女结点)的结点称为叶子结点(又称终端结点)。在分支结构中,每个结点的分支树就是该结点的度。

4)结点的深度。从根节点开始自顶向下逐层累加的。E的深度为3

     结点的高度。从叶节点开始自底向上逐层累加的。E的高度为2

     树的高度(或深度)。树中结点的最大层数。树的高度(深度)为4

5)有序树和无序树。树中结点的各子树从左到右是有次序的,不能互换,则称该树为有序树,否则为无序树。

6)路径。树中两个结点之间的路径是由这两个结点之间所经过的有限的结点序列构成的,

     路径长度。路径上所经过的边的个数。树的路径长度是从树根到每个结点的路径长度的总和。

   注意:由于树中的分支是有向的,即从双亲指向孩子,所以树中的路径是自顶向下的,统一双亲的两个孩子之间不存在路径。

7)森林。森林是m(m>=0)棵互不交叉的树的集合。森林的概念和树的概念十分接近,因为只要把树的根结点删去就变成了森林。反之,只要给m棵独立的树加上一个结点,并把这m棵树作为该结点的子树,则森林变成了树

树的性质

1)树中的结点树等于所有结点的度数加1。

2)度为m的树中第i层至多有m的i-1次方个结点(i>=1),因为按照满m叉树来算就可以轻松理解。

 

 

 为什么可以用第三点,因为满m叉数高度最小

字可能有点丑,勿弃

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Q-HATM(q-Homotopy Analysis Transform Method)是一种基于同伦分析的变换法,用于求解非线性微分方程。其基本思想是将微分方程转化为一个无穷级数的形式,并通过逐项逼近的方法求解无穷级数,从而求得微分方程的解。 具体来说,q-HATM首先将微分方程通过同伦变换转化为一个适当的形式,然后利用q-差分算子构造出一个递推公式,由此得到无穷级数解析式。而这个级数解析式则可以通过截断一定项数来得到微分方程的数值解。 q-HATM的性质包括: 1. q-HATM是一种通用的求解非线性微分方程的方法,能够处理各种类型的方程,包括常微分方程、偏微分方程等。 2. q-HATM的求解过程具有高度的精度和稳定性,能够得到较为精确的数值解。 3. q-HATM的求解过程简单明了,易于实现和计算。 4. q-HATM的收敛性和稳定性与q-差分算子的选取有关,不同的选取方式会对求解结果产生影响。 总之,q-HATM是一种较为有效的求解非线性微分方程的方法,具有多种优良的性质和特点。 ### 回答2: 同伦分析变换法(Homotopy Analysis Transform Method, HATM)是一种基于同伦分析的数学方法,用于求解非线性偏微分方程。它由中文名为魏尔斯特拉斯(Weierstrass)同伦分析变换法发展而来,是一种较为高效的计算方法。 同伦分析变换法的基本思想是通过引入一个辅助参数h,将原始的非线性偏微分方程转化为一系列傅里叶级数的形式,再利用级数展开的特性进行计算。通过逐次逼近的方式,不断迭代计算,最终得到所求解函数的近似解。 同伦分析变换法的定义是,在辅助参数h趋近于1的过程中,通过构造一个逐渐趋于零的同伦变换函数来近似原方程,从而达到求解方程的目的。在这个过程中,通过选择适当的迭代次数和初始逼近函数,可以得到更精确的解。 同伦分析变换法具有许多优点和性质。首先,它可以用于求解广泛的非线性偏微分方程,包括高阶和多维情况。其次,该方法相对简便,不需要进行复杂的数学推导和变换。此外,同伦分析变换法还具有高精度和快速收敛的特点,能够在较少的迭代步骤中得到精确的解。 同伦分析变换法是一种强大的数学工具,能够应用于各个领域,如物理学、工程学和生物学等。它为研究非线性偏微分方程提供了一种有效的数值求解方法,有助于深入理解和解决实际问题。 ### 回答3: 同伦分析变换法(Homotopy Analysis Transform Method,HATM)是一种解决非线性微分方程的数值方法。它由Liao(1992)提出,并广泛应用于数学和物理学领域。 同伦分析变换法的定义是通过引入一个辅助参数p,并将原方程转化为一个同伦方程。该同伦方程包含了主方程和一些辅助项,这些辅助项是通过将原方程表示为一个级数的形式来产生的。在同伦方程中,通过调整参数p的取值,可以逐步转化为目标方程。 同伦分析变换法有以下性质: 1. 收敛性:HATM方法能够在渐进级数中获得收敛解。通过增加级数项的个数,可以提高解的精度。此外,通过选择合适的辅助参数p和初始逼近函数,还可以进一步提高收敛性。 2. 对任意边界条件的适应性:HATM方法可以适用于多种类型的边界条件,包括Dirichlet边界条件、Neumann边界条件和Robin边界条件等。这使得HATM方法在处理具有复杂边界的问题时具有优势。 3. 高效性:相对于传统的数值方法,HATM方法能够在较少的计算步骤中获得较高的解的精度。这是因为HATM方法通过调整辅助参数和级数项的个数,可以逐步提高解的逼近程度,从而减少计算工作量。 同伦分析变换法是一种强大且灵活的数值方法,尤其适用于求解非线性微分方程。它的概念定义相对简单,但是通过调整参数和级数项,可以在不断逼近目标方程的同时,保持数值解的收敛性和精度。因此,HATM方法在求解实际问题时具有很大的应用潜力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值