分数阶微积分
文章平均质量分 75
是数学系的小孩儿
生命不止,学习不止。
今天的你是可爱的在学习吗?
展开
-
拉普拉斯矩阵
拉普拉斯矩阵(Laplacian matrix),也称为基尔霍夫矩阵(Kirchhoff matrix),是图论中的一个概念,常用于描述图的结构特性。拉普拉斯矩阵在图论、网络分析、机器学习等领域有着广泛的应用。是度矩阵(对角矩阵,对角线上的元素是顶点的度数),之间存在一条边,则对应的非对角线元素。如果两个顶点之间没有边,则。相连的边的数量,即顶点。是边集合,拉普拉斯矩阵。,其对应的对角线元素。原创 2024-11-01 11:59:47 · 1095 阅读 · 0 评论 -
微分包含理论
时滞微分包含理论是非线性分析理论的重要分支,它的产生主要来自于控制论的发展和右端不连续微分方程的研究。微分包含理论起源于20世纪30年代,但直到60年代初,优化控制和微分方程理论研究才促进了微分包含理论的发展。微分包含的稳定性理论包括稳定、渐近稳定、一致稳定、一致渐近稳定以及指数稳定等概念,这些结果是常微分方程、泛函微分方程以及微分包含稳定性理论的推广和完善。微分包含系统的研究内容包括:它的不变集、回归集、吸引集、极限环、可达集的性质和计算,以及最优控制变量。表示了一个集合,而非空间中一个点。原创 2024-10-31 22:02:16 · 330 阅读 · 0 评论 -
拉普拉斯变换(Laplace Transform)
拉普拉斯变换的定义如下:给定一个实值函数ftf(t)ft,其拉普拉斯变换FsF(s)FsFsLft∫0∞e−stftdtFsLft)}∫0∞e−stftdt其中sss是一个复变量,ResσResσσ\sigmaσ是一个实数,它取决于函数ftf(t)ft,确保积分收敛。原创 2024-10-28 21:13:14 · 1060 阅读 · 0 评论 -
Neumann边界条件
在实际应用中,诺伊曼边界条件的处理可能比狄利克雷边界条件(Dirichlet boundary condition,即指定函数在边界上的值)更复杂,因为它们涉及函数的导数。在数值计算中,诺伊曼边界条件的实现可能需要特别的考虑,以确保数值解的准确性和稳定性。例如,在热传导问题中,如果一个物体的边界上热流密度是固定的,那么这个边界条件就是诺伊曼边界条件的一个例子。例如,在波动方程中,诺伊曼边界条件可以表示为波动在边界上的法向导数为零,这意味着波动在边界上没有反射,波动的能量可以穿过边界。是我们要求解的函数,原创 2024-10-19 11:12:43 · 505 阅读 · 0 评论 -
Cha4Caputo型分数阶微积分之超奇异性
在量子物理中,超奇异性可能与量子相变有关,例如在超流态到莫特绝缘态的量子相变中,全计数统计(Full Counting Statistics, FCS)在超流相中作为相位角的函数会表现出明显的尖点奇异性,而在莫特相中则是光滑的。在物理学中,分数阶导数的超奇异性可能与系统的某些非局部特性或者长程相互作用有关,这些特性在传统的整数阶导数中是不会出现的。在数学中,超奇异积分是一类特殊的积分,其积分核在积分区域的某些点上具有很高的奇异性,以至于不能直接用经典的数值积分方法进行计算。原创 2024-10-18 21:40:54 · 824 阅读 · 0 评论 -
分数阶微积分MATLAB计算
【代码】分数阶微积分MATLAB计算。原创 2024-09-03 21:54:49 · 455 阅读 · 0 评论