SepMark水印论文阅读与复现

论文名称:SepMark: Deep Separable Watermarking for Unified Source Tracing and Deepfake Detection 发表在去年的ACM MM上

代码:GitHub - sh1newu/SepMark: SepMark: Deep Separable Watermarking for Unified Source Tracing and Deepfake Detection

Discrimination部分代码需要自己补齐,例如simswap、roop、faceswap等

这是一篇高质量的Deepfake主动防御论文,实验结果也非常理想。作者的思路是在原始图像中添加一个水印,然后训练两个decoder分别提取两种水印结果:鲁棒水印和半脆弱水印。通过半脆弱水印验证原始图像有没有被Deepfake(例如Faceswap、GAN属性编辑等)篡改,通过鲁棒水印溯源图像来源。下面就是作者的流程图:

作者基于这样的现实场景进行创新:即鲁棒水印在一般的Deepfake之后仍能保持较高提取准确率(前提需要在特定的噪声层下训练),这样的话很难判断我拥有的究竟是原始图像还是Deepfake图像(因为都能提取水印)。这时我们是不是可以不让这个水印具有Deepfake的鲁棒性,也就是不在这个噪声层下训练,但是这样的话就只能做到版权判断,不能做到原始图像溯源。

因此作者就想设计两种水印,鲁棒水印在所有的噪声层中训练,在图像被Deepfake之后仍能保持,用来溯源;半脆弱水印只在一般物理攻击上训练(例如JPEG压缩、高斯噪声等),不在Deepfake攻击上训练,这样的话半脆弱水印就不会对Deepfake鲁棒,就可以用来判断图像是否被Deepfake。

我觉得这个思路真的很巧妙,充分利用了水印只对特定训练噪声层具有鲁棒性的特点。而且作者的网络设计也独具创新,理论上是两种水印:鲁棒水印和半脆弱水印,但实际中二者是同一种,只是用不同的Decoder提取。

从上图可以看到作为鲁棒水印提取器的Tracer网络和作为半脆弱水印提取器的Detector网络结构是相同的,只是参数不同,这样的话就达到了提取两种水印的目标。图中的第一个噪声图像 I(黄色)是经过全噪声层(物理+Deepfake)的图像,用来训练鲁棒水印的提取器,第二个图像 I(蓝色)是经过物理噪声攻击的图像,让半脆弱水印可以抵抗这些物理攻击,第三个图像 I(紫色)是Deepfake攻击,通过损失函数让提取消息与嵌入消息不同达到半脆弱的目标。

复现:作者开源了代码,Bug并不多,只需要把噪声层中的几个Deepfake的方法补充完整即可,可能Simswap的模型需要根据自己的pytorch版本换一下,复现结果基本和论文保持一致。

作者提供的预训练模型中,物理噪声层是常用的攻击,Deepfake攻击训练了SimSwap(换脸)、GANimation(表情改变)、StarGAN(属性编辑)三种噪声层。

攻击一:SimSwap(训练时见过的面部重建类型Deepfake)

测试了800张图像,鲁棒水印误码率平均为7%,半脆弱水印误码率平均为45%,达到随机解码效果,可见两种水印对于Deepfake攻击都达到了目标效果。

下图第一行:原始图像、第二行:水印图像、第三行:攻击/篡改图像、第四行:水印图像-原始图像(绝对值)、第五行:攻击图像-水印图像(绝对值)

攻击二:GANimation(训练时见过的属性编辑类型Deepfake)

同样测试了800张图像,鲁棒水印误码率平均为0%,半脆弱水印误码率平均为47%,达到随机解码效果,可见两种水印对于Deepfake攻击都达到了目标效果。属性编辑类型Deepfake与换脸类型相比对鲁棒水印破坏更小。

攻击三:亮度调整(训练时见过的物理攻击)

同样测试了800张图像,鲁棒水印误码率平均为0%,半脆弱水印误码率平均为0%,说明半脆弱水印对物理攻击是鲁棒的。

攻击四:MobileFaceSwap(训练时未见的换脸攻击)

同样测试了800张图像,鲁棒水印误码率平均为0%,半脆弱水印误码率平均为0%,说明半脆弱水印此时无效,因为此时需要它保持脆弱性。

通过实验还可以发现,对于属性编辑类型(例如发色改变、年龄、标签改变等)的Deepfake攻击,鲁棒水印基本可以百分百保持;但是经过面部重建类型(例如Faceswap、Simswap)的Deepfake攻击之后,即使提取器之前在噪声层中经过这些攻击的训练,提取准确率仍会下降较大,可以理解为:重建程度越高,破坏程度越高,水印保持越低。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有趣di

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值