文章目录
1. 线性模型(1)
- 英文:linear model
1.1 基本形式
1.1.1 问题导入
若在西瓜问题中,决定一个西瓜好坏有三个属性:
1. 色泽
2. 根蒂
3. 敲声
但它们影响西瓜好坏权重不一样:
1. 色泽: 0.2
2. 根蒂: 0.5
3. 敲声: 0.3
则可以简单得到一个预测函数:
f(xi) = 0.2xi1 + 0.5xi2 + 0.3xi3 + 1
公式解释如下:
1. xi 代表第 i 个示例或样本。
2. xi1, xi2, xi3 分别代表第 i 个示例的第1,第2,第3个属性的属性值。
3. "1": 我觉得是观测范围扩大处理或常量因子。
f ( x i ) = 0.2 x i 1 + 0.5 x i 2 + 0.3 x i 3 + 1 f(xi) = 0.2xi1 + 0.5xi2 + 0.3xi3 + 1 f(xi)=0.2xi1+0.5xi2+0.3xi3+1
1.1.2 基本公式
1. 给定由 "d" 个属性描述的示例 x = (x1, x2, ..., xd), 其中 "xi" 为属性值。
2. "线性模型"试图学得一个通过"属性的线性组合"来进行"预测的函数"。
3. 抽象出公式的时候,一般就用x代表xi。"示例x" 代替 "第i个示例xi"。
f ( x ) = w 1 x 1 + w 2 x
这篇博客详细介绍了线性模型的基础知识,包括线性模型的基本形式、线性回归和对数几率回归。线性模型以f(x)=wTx+b的形式表达,其中w和b的确定是关键。线性回归分为单元线性和多元情况,而对数几率回归通过对数几率函数解决0/1分类问题,模型建立过程涉及线性回归和对数几率函数的结合。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=123342263&d=1&t=3&u=0478181b901647f68d4f20220593b0ec)
1363

被折叠的 条评论
为什么被折叠?



