简介
在本文中,我们将深入讲解如何通过 AutoDL 租用 GPU 服务器,并利用 Conda 配置 Python 环境。接着,我们将配置 PyCharm 与 AutoDL 实例进行远程开发,帮助你高效进行深度学习模型的训练与部署。无论是配置 Jupyter 内核,还是在 PyCharm 中进行代码开发和调试,本教程都将手把手教你如何操作,让你的开发过程更加流畅。
目录
一、AutoDL 环境配置
在使用 AutoDL 租用 GPU 时,首先需要通过 Conda 配置 Python 环境。以下是详细的配置步骤。
1.1 租用 AutoDL 服务器
- 访问 AutoDL 平台并租用 GPU 服务器,确保你的租用实例具备所需的显卡支持。
1.2 进入终端并配置 Conda
通过 JupyterLab 进入终端并配置 Conda 环境。
-
点击 JupyterLab 进入终端:
-
使用
conda activate base
命令激活环境,但可能会遇到命令无法识别的错误。接下来我们来配置 Conda。
1.2.1 配置Conda 环境
-
输入
vim ~/.bashrc
,打开配置文件 -
键盘输入
i
(一定保证是英文i) 开始编辑 -
在文件末尾添加以下路径:
source /root/miniconda3/etc/profile.d/conda.sh
-
按 Esc,然后输入
:wq
保存退出。 -
输入
bash
命令重启终端,或直接关闭终端重新打开。 -
再次使用
conda activate base
命令,即可成功激活环境。
1.2.2 创建 Python 环境
创建一个新的 Python 环境:
conda create -n py38 python=3.8
conda activate py38
1.2.3 安装 PyTorch 和其他依赖
根据显卡的 CUDA 版本,安装适合的 PyTorch 版本。
-
输入
nvidia-smi
查询你的显卡支持的 CUDA 版本:例如这是RTX 4090D 的显卡,最高支持12.4的CUDA -
安装 PyTorch,进入官网找到对应历史版本
以我的主机参数:2080Ti 显卡,conda 10.1,python3.8环境为例——查询到使用1.7.0版本,CUDA选择10.1 的pytorch
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.1 -c pytorch
本人的UNet项目开发环境——RTX 3090 显卡,conda 10.1,python3.8 (ubuntu18.04)环境为例, CUDA 11.3 的pytorch (正在使用)
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117

安装其他必需的包:
pip install jupyter d2l
1.3 更新 Jupyter 内核页面
-
在创建的环境中安装 Jupyter 内核:
在创建的 py38环境中,输入
conda install ipykernel
-
使用以下命令更新内核:
输入:
ipython kernel install --user --name=sci_research
,成功之后刷新页面,如下:
刷新页面,新的内核配置就会出现在 Jupyter 页面中。
二、在 PyCharm 中配置 AutoDL
2.1 连接 AutoDL 实例
登录 AutoDL 后复制 SSH 指令,连接到实例:
例如SSH指令: ssh -p 20777 root@region-77.seetacloud.com

2.2 配置 SSH 连接
-
打开 PyCharm,进入 Settings -> Tool -> SSH Configurations。
-
填入 SSH 信息并点击 Test Connection 测试连接。
2.3 配置远程 Python 解释器
-
在 Settings -> Project -> Python Interpreter 中添加远程解释器。
-
选择Existing
-
配置远程解释器路径
可以通过在远程cmd终端输入
whereis python
,查找miniconda的环境所在路径
默认是在/root/miniconda3/bin/python
,自定义创建的新环境就会在 miniconda下的envs文件夹中(例如小编的路径为:/root/miniconda3/envs/py38/bin/python
)

2.4 配置项目映射和文件同步
-
在根目录下创建一个新的项目文件夹,以便管理。
root目录为 根目录,为了便于管理,那就在root目录下创建新的项目目录(小编创建了root/unet_my文件夹)
-
在 PyCharm 中配置项目映射,将本地文件与远程服务器同步。
三、PyCharm 与 AutoDL 交互
3.1 配置自动上传与远程资源管理
通过 Tools -> Deployment 配置自动上传和远程资源管理。

在 Browse Remote Host 中管理远程资源,下载训练好的模型到本地。
3.2 下载远程模型和数据

使用 Automatic Upload (Always) 将代码自动上传到远程服务器。
提醒:远程交互也可以使用XShell、FinalShell等远程工具灵活使用。
总结
通过本文的详细步骤,你已经成功配置了 AutoDL 环境并在 PyCharm 中实现了远程开发与 GPU 加速。无论是通过 JupyterLab 进行实验,还是在 PyCharm 中开发、调试与训练模型,都能有效提高你的工作效率。借助 Conda 和 PyTorch 的强大支持,你将能够快速搭建深度学习环境,并专注于模型的训练与优化。