一、背景介绍
根据国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。给定𝑛 个皇后和一个𝑛×𝑛大小的棋盘,寻找使得所有皇后之间无法相互攻击的摆放方案。
如图所示,当𝑛=4时,共可以找到两个解。从回溯算法的角度看,𝑛×𝑛大小的棋盘共有个格子,给出了所有的选择 choices 。在逐个放置皇后的过程中,棋盘状态在不断地变化,每个时刻的棋盘就是状态state。
下图展示了本题的三个约束条件:多个皇后不能在同一行、同一列、同一对角线。值得注意的是,对角线分为主对角线\和次对角线/两种。
1. 逐行放置策略
皇后的数量和棋盘的行数都为𝑛,因此我们容易得到一个推论:棋盘每行都允许且只允许放置一个皇后。
也就是说,我们可以采取逐行放置策略:从第一行开始,在每行放置一个皇后,直至最后一行结束。
如图所示,为4皇后问题的逐行放置过程。受画幅限制,下图仅展开了第一行的其中一个搜索分 支,并且将不满足列约束和对角线约束的方案都进行了剪枝。
本质上看,逐行放置策略起到了剪枝的作用,它避免了同一行出现多个皇后的所有搜索分支。
2. 列与对角线剪枝
为了满足列约束,我们可以利用一个长度为𝑛的布尔型数组cols 记录每一列是否有皇后。 在每次决定放置前,我们通过 cols 将已有皇后的列进行剪枝,并在回溯中动态更新 cols 的状态。
那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为(𝑟𝑜𝑤,𝑐𝑜𝑙),选定矩阵中的某条主对角线, 我们发现该对角线上所有格子的行索引减列索引都相等,即对角线上所有格子的𝑟𝑜𝑤−𝑐𝑜𝑙为恒定值。 也就是说,如果两个格子满足𝑟𝑜𝑤1−𝑐𝑜𝑙1 =𝑟𝑜𝑤2−𝑐𝑜𝑙2,则它们一定处在同一条主对角线上。
利用该规律,我们可以借助下图所示的数组 diag1 ,记录每条主对角线上是否有皇后。 同理,次对角线上的所有格子的𝑟𝑜𝑤+𝑐𝑜𝑙是恒定值。我们同样也可以借助数组 diag2 来处理次对角线约束。
代码实现
请注意,𝑛维方阵中𝑟𝑜𝑤−𝑐𝑜𝑙的范围是[−𝑛+1,𝑛−1],𝑟𝑜𝑤+𝑐𝑜𝑙的范围是[0,2𝑛−2],所以主对 角线和次对角线的数量都为2𝑛−1,即数组 diag1 和 diag2 的长度都为2𝑛−1。
def backtrack(
row: int,
n: int,
state: list[list[str]],
res: list[list[list[str]]],
cols: list[bool],
diags1: list[bool],
diags2: list[bool],
):
"""回溯算法:n 皇后"""
# 当放置完所有行时,记录解
if row == n:
res.append([list(row) for row in state])
return
# 遍历所有列
for col in range(n):
# 计算该格子对应的主对角线和次对角线
diag1 = row - col + n - 1
diag2 = row + col
# 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后
if not cols[col] and not diags1[diag1] and not diags2[diag2]:
# 尝试:将皇后放置在该格子
state[row][col] = "Q"
cols[col] = diags1[diag1] = diags2[diag2] = True
# 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2)
# 回退:将该格子恢复为空位
state[row][col] = "#"
cols[col] = diags1[diag1] = diags2[diag2] = False
def n_queens(n: int) -> list[list[list[str]]]:
"""求解 n 皇后"""
# 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
state = [["#" for _ in range(n)] for _ in range(n)]
cols = [False] * n # 记录列是否有皇后
diags1 = [False] * (2 * n - 1) # 记录主对角线上是否有皇后
diags2 = [False] * (2 * n - 1) # 记录次对角线上是否有皇后
res = []
backtrack(0, n, state, res, cols, diags1, diags2)
return res
"""Driver Code"""
if __name__ == "__main__":
n = 4
res = n_queens(n)
print(f"输入棋盘长宽为 {n}")
print(f"皇后放置方案共有 {len(res)} 种")
for state in res:
print("--------------------")
for row in state:
print(row)
逐行放置𝑛次,考虑列约束,则从第一行到最后一行分别有𝑛、𝑛−1、…、2、1个选择,因此时间复杂度为𝑂(𝑛!)。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。
数组state使用𝑂()空间,数组 cols、 diags1 和 diags2 皆使用𝑂(𝑛)空间。最大递归深度为𝑛,使用𝑂(𝑛)栈帧空间。因此,空间复杂度为𝑂(
)。