矩阵的秩-

一、定义、理解

非零子式的最高阶数。

如何理解?什么叫做非零子式的最高阶数???

举个例子:有一个5阶矩阵

首先什么叫子式?

例如2阶子式就是,任取某两行某两列组成的行列式,就叫做子式

同理,3阶子式就是任取谋三行三列组成的行列式。

其次,什么叫做非零子式的最高阶数?

很好理解,例如,这个矩阵A的3阶子式均不为0

但是,A的4阶、5阶子式全都为0

那么,此时,这个矩阵A的非零子式的最高阶数就是3

但是一般来说,这种理解很抽象,也很繁杂,难道我取算一个矩阵的秩要从它的1阶、2阶...直到算出为0的n阶子式为止吗?很明显,这简直式脑子抽了。

但是,就没有办法了吗?

有。这就是初等变换。

二、初等行变换求矩阵的秩(重点)

为什么可以使用初等变换求矩阵的秩?

核心:初等变换不改变矩阵的秩

由于这个性质,A乘一个可逆矩阵B,不改变A的秩。

因为可逆矩阵可以视为一系列初等矩阵的乘积组合。

所以,我们只用初等变换将A化成一个更简单的矩阵,来判断非零子式的最高阶。

(注意,学长标出的式行变换,而不是列变换,为什么?第一,足够化出来;第二,后期求线性防方程的基础解析会用到,基础解系是重点的重点!)

例题:

这个矩阵的秩为3,为什么?

因为最后一行为0,如果将最后一行包括进去,那么行列式就为0.

如果矩阵的秩为4,叫做满秩。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二十5画生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值